
AD-AtiA 731 PAR TECHNOLOGY CORP NEW HARTFORD NY F/6 9/2
ON-LINE PATTERN ANALYSIS AND RECOGNITION SYSTEM. OLPARS VI PRO- ETC(U)
JUN 82 S E HAEHN 0 MORRIS

UCLASSIFIED PAR-82-15 NL

E IIIIIIEEEEEIIIEEIIIl
EEIIIEEEEEIIEE
EEEEEEEEEEEEEE
IIIIIIIIEEEIIE

- PAR TECHNOLOGY CORPORATION

'N-

I

Approved for public release:
distribution unlimited

860 027

LIAI
.--

I sY:E:4'! A :2r:EANCE WiA

I ~~.ze 3, 29

IA

REPORT DOCUMENTATION PAGE ,E?;rE I', LRTI ORM
BEY- (RE COMPLETING FORM

I. REPORT NUMBER 2 GOVT ACCESSION NO. 3 RECJ;-1Eh,*' CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED

OLPARS Programmer and System

OLPARS VI (On-Line Pattern Analysis and Maintenance Manual

Recognition System) 6 PERFORMING ORG. REPORT NUMBER

_ _ _ _i.__- 82-15
7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(e)

Mr. Steven E. Haehn
Ms. Donna Morris

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA 6 WORK UNIT NUMBERS

PAR Technology Corporation
Rt #5, Seneca Plaza
New Hartford, New York 13413

I1. CONTROLLING OFFICE NAME AND ADDRESS I2. REPORT DATE

June 18, 1982_
Department of Defense

J 1 9
IS. NUMBER OF PAGES

Washington,
D. C.

14. MONITORING AGENCY NAME & ADDRESS(if ditferent from Con troll 7ng fic) 15. SECURITY CLASS. (of this report)

Same As Block 11 UNCLASSIFIED
1Sa. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

36- 01S- iBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on rever.. ide iI necessary nd Identify by block number)

Pattern Recognition, Structure Analysis, Discriminant Analysis,
Data Transformation, Feature Extraction, Feature Evaluation
Cluster Analysis, Classification Computer Software

20. ABSTRACT (Coo=t-em rwree sie i. 'rn.a.e y sad identify- by block ntrmb,,)

The OLPARS Programmer and System Maintenance Manual (or Programmer's Refer-
ence Manual) contains the detailed information about the structure of all the
files used in "portable" OLPARS. The manual also describes how to access the
information contained in these files. A separate section describes the
different "displays" OLPARS Generates, along with detailed information about
the contents of the user's "display" files. Terminal and text-file input and
output pack ages are described in detail here, also.

DD FORM 1473 EDITION OF I NOV GS IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Wllen Dal Entered)

CLPA..S ?r-cgrarrer

System :4!aln.enance '.anual

C.LPARS V:

Submitt-ed By

PAR TECHNOLOGY CORP C TN
? cuze 5, Seneca Plaza

New Hartford, New Yorx 134i3

Authors

,4r. Steven E. Haehn

M4s. Donna A. Morris

PAR REDR #a2-1E

LL

TALLE OF CCN4TENTS

. INTRODUCTION . I

I.C DESIGN OVERVIEW 2

1.1 THE COMMAND INPUT PROCESSOR (CIP) 3

1.2 ABSTRACT FILES AND INPUT/OUTPUT 4

1.3 COMMAND STRUCTURE 4

1.4 OLPARS TRANSPORTATION CONSIDERATIONS 5

2. THE EXECUTIVE 7

2.C INTRODUCTION 7

2.1 A COMMAND INPUT PROCESSOR (CIP) 7

3. FILE MANAGEMENT 9

3.0 INTRODUCTION

3.1 DEFINITIONS 10

3.2 FILE SYSTEM ROUTINES AND USAGE 13

3.2.1 Level I Manipulation Routines 18

3.2.2 Level I File Access Routines 22

3.2.3 Level II Routines 24

4. PORTABLE OLPARS FILEING STRUCTURE 26

4.0 INTRODUCTION 26

4.1 THE COMMUNICATIONS (CM) FILE 27

4.2 THE TREE INFORMATION (TI) FILE(S) 29

4.2.1 Additional Considerations 33

4.2.2 Numerical Example 40

4.2.3 Creating New Trees From Old Trees 41

4.3 OLPARS FILE "FREE" LISTS 44

:1i

TABLE CF COCNTENTS (continuec)

4.4 ThE TREE VECTCR (TV) FILE 47

4.5 THE TREE LIST (TL) FILE 5C

4.6 THE LOGIC INFORMATION (LI) FILE 52

4.7 THE LOGIC VALUE (LV) FILE 60

4.8 THE LOGIC LIST (LL) FILE 86

4.9 THE SAVEL VECTORS (SV) FILE 86

4.10 THE SAVED TRANSFORMATION MATRIX (ShF) FILE . . . 90

5. DISPLAYS 94

5.0 INTRODUCTION.. 914

5.1 TWO-SPACE DISPLAYS (SCATTER AND CLUSTER) 95

5.1.1 THE DISPLAY INFORMATION (DI) FILE 96

5.1.2 THE DISFLAY VALUE (DV) FILE101

5.1.3 THE PROJECTION VECTOR (PV) FILE105

5.1.4 Screen Coordinates 109

5.1.5 Scaling In Two-Space Displays115

5.1.6 Original And Current lin-Max Coordinates . . . 115

5.2)NE-SPACE DISPLAYS (MICRO AND MACRO)116

5.2.1 Screen Parameters For Cne Space Displays . . . 122

5.3 DISPLAY FILES USED IN MEASUREMENT EVALUATION

COMMANDS . 123

5.4 CONFUSION MATRICES 133

6. TERMINAL AND TEXT FILE INPUT/OUTPUT 139

6.0 INTRODUCTION 139

6.1 OLPARS TERMINAL CHARACTER INPUT/OUTPUT 139

6.1.1 Special Characters Within A Format Control

String . 141

6.1.2 TRMPUT 143

ii

TABLE CF CCNITEINTS' (continued)

6.1. TRMGET . 4

6.1.4 Some Notes Cn Terminal I/C. 156

6.2 OLPARS TERMINAL GRAPHICS INPUT/CUTFUT 157

6.2.1 Graphics Input Utility. 157

*6.2.2 Graphics Output Utilities 153

6.2.3 TEXT 158

6.2.14 MARK. 159

6.2.5 LINSEG 159

6.2.6 ERASE.......................159

6.2.7 MOVE.........................159

6.2.8 RCTNGL 159

6.3 OLPARS TEXT FILE INPUT/OUTPUT. 160

6.3.1 FILGET 160

6.3.2 FILPUT 161

6.3.3 Printing - OLPARS Output To A Computer Printer 161

6.3.14 OLPARS Data Tree Input/Output.........163

6.3.5 Some Notes On Terminal And Text File I/O . 163

7. OTHER FEATURES 165

7.0 OLPARS FORTRAN CODE GENERATION 165

* 7.1 OLPARS ECOLEAN STATEMENT INTERPRETER 167

7.2 BATCH PROCESSING IN OLPARS 168

7.3 EXPANDABILITY. 172

8. SYSTEM DEPENDENCIES 174~

TAELE CF CIITEUvTS (continued)

A FPENDLOI X

A. THE CGMMA1ND INPUT PROCESSOR (CIP) ON RSX-11M 177

B. OLPARS RSX-11M SYSTEN DEPENDEN4T FILES. 182

C. STEPS TO TAKE IN EXPANDING OLPARS UNDER RSX-11M .197

D. LPARS "HELP" FUNCTION 199

E. OLPARS INSTRUMENTATION PACKAGE 203

F. OLPARS RSX-11M I/O NOTES........ 219

G. OLPARS PROGRAMMER AIDES 230

Ii. OLPARS PARAMETER LIMITS 24

J. FILE TYPE NAMING CONVENTIONS OF OLPARS RSX11M

F ILES 260

K. MISCELLANEOUS TEXT FII.ES CREATED BY OLPARS

COMMANDS.....................265

iv

FIGURE LCCATION1

I
Fig. - A MULTICS Command File (7-1) 184
Fig. - Between-Group Confusion Matrix (5-20) 134
Fig. - Boolean Group Logic Block Format (4-16) 68
Fig. - Closed Lecision Eoundary Format (4-19) 77
Fig. - Communications File (4-1) 28
Fig. - Covariance positions in TI file (4-5) 3.39
Fig. - Creating tree relying on entry table (4-6) 43
Fig. - DI File Entry for Confusion Natrix (5-23)138
Fig. - DI File Entry for One-Space (5-9) 119
Fig. - DI File Entry for Rank Order (5-15)128
Fig. - DI File Entry for Two-Space (5-2) 101
Fig. - DI File Header (One-Space) (5-1) 97
Fig. - DI File Header (Two-Space) (5-1) 97
Fig. - DI File Header for Confusion Matrix (5-22) 137
Fig. - DI File Header for Rank Crder (5-14) 127
Fig. - Display with Cluster Plot Grid (5-8) 113
Fig. - DV File Entry for Cne-Space (5-10)120
Fig. - DV File Entry for Two-Space (5-5) 106
Fig. - DV File for One and Two-Space (5-3) 103
Fig. - DV File for Rank Order (5-16) 129
Fig. - DV File Header, One, Two-Space (5-4)104
Fig. - Example of Fisher Fair Logic Block (4-13a) 64
Fig. - Example of CLPARS Command File 184
Fig. - File Access and Control Table (3-1). 19
Fig. - File Code Table example (B-3) 194
Fig. - Free List of a tree file (4-7) 45
Fig. - Hyperellipsoid Sub-block Format (4-22) 81
Fig. - Hyperrectanular Sub-block Format (4-20) 78
Fig. - Hypersphere Sub-block Format (4-21). 8C
Fig. - Hypothetical screen coordinates (5-7)110
Fig. - Independent Reject Strategy Format (4-23) 83
Fig. - Logic block linkage example (4-13) 63
Fig. - Logic Information file entry (4-12) 55
Fig. - Logic Information file header (4-11) 53
Fig. - Logic List file (4-25) 87
Fig. - Nearest Mean Vector Logic Format (4-17)69
Fig. - Nearest Neighbor Logic Block Format (4-24) 84
Fig. - OLPARS File I/O paths on RSX11M (F-I) 223
Fig. - OLPARS History file (E-2) 208
Fig. - OLPARS History file example (E-3).210
Fig. - OLPARS Histoy file record (E-1) 207
Fig. - OLPARS option "text" file (E-2) 186
Fig. - OLPARS option file (B-i) 184
Fig. - One-Space Display parameters (5-13)125
Fig. - One-Space Group Logic Block Format (4-14).. 65
Fig. - Optimal Liscriminant Logic Block Format (4-lEa) 75
Fig. - Original and current min-max coord. states (5-8a) 117

V

FIGURE LCCATIONI (continued)

Fig. - Pairwise Logic Block Format (4-1). 72
Fig. - PV File for Cne and Two-Space (5-6)107
Fig. - SI File Entry for One-Space (5-12) 124
Fig. - SI File Entry for Rank Order (5-lE)131
Fig. - Si File example (r-19) 132
Fig. - SI File Header for Cne-Space (5-11) 123
Fig. - S1 File Header for Rank Order (5-17) 13C
Fig. - Saved Natrix File Entry (4-2E) 93
Fig. - Saved Matrix File header (4-27) £2
Fig. - Saved Vector File (4-26) 88
Fig. - Tree Information file entry (4-3) 33
Fig. - Tree Information file example (4-5a). 41
Fig. - Tree Information file header (4-2)
Fig. - Tree Information Structural pointers (4-4). 34
Fig. - Tree List file (4-10) 51
Fig. - Tree Vector file (4-8) 48
Fig. - Tree Vector file entry (4-9) 49
Fig. - Two-Space Group Logic Elock Format (4-15) 66
Fig. - Within-Group Confusion Matrix (5-21) 135

vi

I

IS -,C i iL 1

T ILTRCE!C l

This cocument is meant to be usec as a "rtference" manual by

CLFARS progratnmers or people who are to maintain an existinL

"portable" CLPARS system. Most of the overview information s culc

be gctten from the CLPARS ' Final Report.

This manual contains information only about the 'linE

structure, I/C packages and F.SX-1M specific features of "nc: ,lle

CLFARZ. Detailed information about specific CLFAhS programs ulo

be obtained from the CLPAhS V and/or CLPARS 1i Software he.

anuals.

Aithin these pages you will find inforration about tne

structure of all the CLPARS files and how to access the content of

these files. A separate section describes the different "cispla~s"

CLPARS generates, along with detailed information about the

contents of a user's "display" files. Terminal and text-file input

ana output packages are discussed in detail here, also.

,,e basic ideas behind this current design of CLFihS are the

maximum utilization of a standardized programming language (FCPTR i.

IV) for algorithm processing and the abstract treatment c the d~taI

by programs through the filing system and input/output processes.

That is, all CLFARS processing routines will utilize subroutircs

for accessing data files and performing input/output.

1

2r.'2acutcr. -- 1

crz equer.tl , ti .tt C processinc r-.ines c .n be :. c i.e r. . S te.:"

:ncpnctnt anc car. be transf'erred tc r,, c,:utcr ccr. f4rurLz. ct..

FC[iA . :V compiler. Cr each irler, tatior., only a

iu. nun..ber cf subroutines, ',ich are :ac ine cr systerr.

de enCEnt, ui1l have to be- reprogramm ec. Tus, tt, ke} feature f

this cEsign is t.he ccncept cf "portatility".

1.C LL7 IG1, CVEFVIE .

:n this section, ,e present a brief cverviev, of tne design for

the "portatle" CLPA RS; other sections will discuss incividua!ly,

in greater depth, the key features of the design.

As rrcntiored in t .e Introduction, an important cosign

ingredient in designing a machine and terminal independent, or

"portable", CLPARS is the m axirum. utilization of FCRTIR;. as a

standarc, high level language which can be compiled on any machine

on which CLPARS is likely to be implemented. This feature, the use

of FCRTRAI., is almost a design "must" in reaching th-e machine

independent goal. however, since different computers have

different operating systems (some computer installations ,may

utilize more than one operating system with the same computer), anc

since operator terminals and other peripherals are not standarc,

inependence within the filing system and I/ mechanism is

difficult to achieve.

2F

Irtrcuctic. --
_ x C "\ !. '.: . . .

Tkericzrt, i:. ~LAi, .i:ct is t.eavily filE or'er tf- c

Cie.ey oe;enCer.t cr ra .Ac !/(C z(d cr era.tcr interactior, t:.c u e

c I Li." hL only partially rmeets tLe gc of portaL il i . :L.e cci.er

as pect Cc t Le rtable CLFAS c esi r. are: ti._ scpratE

rc;ram apprcacn ,.tn a con.mano input processcr (CI); t":e use - I

f iles for passing parameters anc cate; and an ir.u/cutput .:cka,:e

czr perfor.ir.- i/C. La c of these areas :ill Le cizousseo

separately in subsequent sections.

1. 1 1TLE CC1-,%AN.L F:fU7 PICCESCF (C I)

From system to system, programs are initiatec (startec up)

o fferently. The CIP is desigred tc cvercome these differences.

Each LLFAIRS function is designed as a separate program and should

in itself be portable. in crder to make the initiation of eacht

program uniform, there is a system-dependent module, the CIP, .hich

acts as an interface between CLPARa and the user. This

mini-executive accepts the OLPARS program name ar.d performs any

system required operations needed to cause that prograrmi to run.

The CIP, along with the separate program approach, will

support portability, modularity, ease of maintenance ar.o expansion,

and promote structural freedom in command execution. The Ci is

discussed in detail in Section 2 and the design for the CIJ under

RSX-11N v3.2 can be found in Appendix A of this marual.

.. ,.4j.

..mtrccuct4Cr. -- 1

:' AhAL, ' L! AL.L I.FL'/ULU U

1.: 1,LL lC FI:LE AIL :I.I L/CLTI 'T

r: rder to -cccrt:oc LLe vzrious filirg sy :e;:s, wor sizes &r c

i/- .ecuLiarities it,tc t :e cesiLgn cf tLe pcrttle CL F AU , eIcl I1

the IrGI vicua programs hJci-. ir.piemrent a functicr: ill treat file

zats a .c /L abstractly. a'nat is, the prcgrers ,il _ "know" ;,r.a

cata is Jr a file, arc: will call a subroutine to store or retrieve

tLe data. Tihe sutroutine, cr possibly levels of subroutines,

"knrcw" the torml.t of the files and hci to access the ph~sical cata

reccrcs.

i/C, particularly graphic i/C, wil alo be abstractec b)

subroutine calls. Thus, the individual programs 6eich erfcrm the

CLFAS ccmmanas will be completely system indepencent; ornl the

subroutines, which translate the abstract requests into specific

coce for a particular system, will be systen or terminal dependent.

1.2 CCNI,AIN[L STRUCTLRE

The command structure (see CLFARS V Final Report) for portable

CLFARS has been kept similar to that of the Iultics CLPARS

Cperating System (h CCS). The complete structural freedom of LCCS

has been retained. Complete designs for the programs that will

carry out user commands and all necessary subroutines can be fount

in the CLPARS V-VI Program Specifications. Detailed oescriptions

of all the programs that have been kritten under the CLPARS VI

contract can be found in the CLPARS VI Softs.are Reference Lanual

(TRP.). The CLPARS V Software Reference 1Kanual contains program

Li

U1trcctc Lc --

sPecificaticns cf all the prcg r .ns ir.1t i-.l ce S r.c for

"4crtabL"'l CLFAi.S. .ote, thc CLPAFS-U! S ,. is not a jcrlcct subset

c: tihe LLPA",s-V Li.!-.

1.4 CLPAh EA:F,,Sch'IAlc!, CCrhIE[AT: .i.S

Ideally, the best way to transport CLPAiES to a new cperatinE

system is to have two knowledgeable people; cne who "kno.ws" CLFARS

Ir.sice out and one who "knows" the hcst operating system

input/output (I/C) facilities insice cut. As is usual when

transporting application software, the I/C sections must be

rewritten to accomccate the new operating system. Othcr system

Cepencent cor.sicerations must also be taken into acccurt. For

instance, how are cr.aracter strings representec in the Iccal

FCnYRA! compiler? is tne length of the ch:aracter string ceterminec

by counting the number of characters urntil an end-cf-strlng symbol

is encountered, or is there a portion cf tre string reservec tc

store the length attribute? Are the strings directly accesitle tc

a program, or is there an indirect reference tc the string throug:h

a string descriptor? Does the host operating system allcw

"spawning" or invocation of one program. thrcurh another prcgra-

(ULPARS may use spawning for a "clean" user interface)? ;-ill t.e

programs need to be "overlayed" and how easy will it te tc cvcr-a;

the programs? (nontrivial problem tecause reprogrammikC cf entire

command structure may be necessary).

5

II

i:ntrccuctlzr. -- 1
L Li-/ -;I i.. i~ -, .SFC "7I U L t,£ L -I .I L

In "portable" CLFA ', .e ,.avF :scater the i/ into p&iaLCs.

Lection Ccf this man.. 2a. ex pLains .n treat c.etail t,.,.at tise results

ol the tern:inal ana text file i/ pacI.a are culc cc it .ie

Secticn . explains the abstract ccncept of CLFj.Ff2 "Icck" "/2

p-ckagt (FCE FFLT) anc Level routines.

Systerr. dependent features of the portable CLFAh h S s4gn are

pointed out in many of the sections where they occur. A summary of

the system depencent functions is given in Section E. The

appendices contain a discussion of the cesigns of how these system

dependent aspects will operate on the PLP-11/7C under RLX-11 .

version 3.L. The CLPARS V Final heport (of i.ovember 15, 1979)

gives an overview of the filing structure used with the details

spelled cut in sections 4 and 5 of this manual. An appendix in the

CLFARZ V! Software Reference I-anual contains a list of names cf all

the system dependent programs.

,6

ECUCI. 2

T!UE EXECLTIkL

The goals of an executive for the portable FChTRAI. version of

LLPAHE are to ease the user's access to the CLPARL routines, arc to

be simple enough to provide a rmaximui' amcuunt of pcrtabilizy. The

latter gcal is important since the executive and any accompanying

overlay structure will be system dependent. In light of these

goals, we have designed each user command to be a sEparate program

ano have written a small executive prograr. to be an interface

between the CLPARS user and the local "operating" system.

2.1 A CCI,.ALD INPUT FRCCESSCR (CIF)

To install CLPAFS on most computer operating system:s, a short

executive called a Command input Frccesscr, or CIF for short, is

written. The CIF, normally, is a system dependent executive

program whose main jobs woulo be to accept user ccr.ands and

parameters, ado any system jargon (e.g., RL:;, paths to an CLFAHS

directory), place any necessary paratreters in a file, an ther s~aln

(invoke or activate) the orograms requestE'. For F.X-1N v3.2, the

spawning capability has been left out cf the CIF because it is

handled very nicely by the system command file prccessor.

7

,h~e EXECUtiVC --

~ cCWL LFI FRCCL I Ch (CTF

Ly us17& a CIF, CLFAF.Z "'looks" the same on oll'ferent opEratir.l'

systems. Te user coes not nave to add fiUL' stat-eren5, circ-ctcry

JrniorrLt ion, etc., to his/her ccmmnrd li n e. Eetailsz 1 C Ut thE

Comr,,rd In put rrocessor, under the f-11'. version 2 operating

systerm, czr be found in Appendix A of thi-s manual.

A

FILE .A:,ACENL,;T

C I?.T'CLUCTICII

As we have seen in Section 2, CLPARS is considered as a set of

individual programs, each of which performs a particular pattern

recognition algorithm or an ancillary data manipulation function

which supports the user and/or CLFARS as a system. Lach of these

programs corresponds to an CLPARS "command." The CLFAhS user calls

for the execution of these commands in a sequence which (s)he deems

most appropriate for reaching a solution of a particular pattern

recognition problem. In CLPARS, files cf information play a major

role in the system in several important ways: storing the basic

input data; storing system information; storing decision logic

and logic evaluation results; and storing intermediate information

- results of one command which are used as inputs to subsequent

commands.

As a result of using the approach described in this section,

it will be possible for each program called b a user to be truly

portable. All file handling will be accomplished by a limited

number of subroutines, and only these will have tc be rewritten

when implementation is required on another machine/system.

Furthermore, when writing the user-callable prcgrams, it will not

be necessary to know the details of the file formats - the j[c

• ...e --

rcrLmr.er need cnl knc,,. whaL infcrmr:ation is stored in the files

an utilize z set of machine-independent subroutines which access

this information. Lesides simplifying the portability prcbie.s,

this, of course, makes implewentation of ne, algcrithms an easier

t ask.

hdcitional benefits of this approach include minimizirn

physical record reads and writes, and an encoding scheme for nan. inC

files which eliminates the need for a program to do repetitious

character string manipulation.

3.1 LEFINITICES

The following definitions apply to any CLPARS user file.

The basic unit of a file is an "element." Each element in a

file is sequentially numbered starting with 1 (one). An element

can store a character, an integer, or a real number; the format of

our element is the particular machine's floating point format.

This definition eliminates problems of varying word sizes on

different computers or the method of packing characters. Some

space will be wasted by storing a single character as a floating

point word, but since the great majority of information stored in

CLPARS files is in the form of real numbers, the small inefficiency

of storage utilization is more than off-set by the universality

which results.

1C

*File r n rceret -- :

L LEFI. lIC!'

A file has a "header portior." whicli consists cf 'n' eier.ents

(wLIre 'n' cculd be zero), which contair intormztion about the file

as a wh ole - e.g., tLe numter cf entries in the file, or

Cinrensicnality of feature vectors containec in a file.

The remaining portion of the file (following the header)

consists of "logical entries", or "entries" fcr short. Each

logical entry contains 'k' elements C'k' is the same for each entry

of a file; 'k', of course, can be oifferent for different files).

Entries are numbered sequentially starting at 1. It may Le

necessary to limit the maximum number of entries in a file to the

largest positive integer of the machine's integer word format.

Two types of permanent files exist for an CLPAhS user; these

types are referred to as "fixed" and "variable." Fixed files are

rancom access files that must exist in each user's directory anc

contain information on the status of that user's CLPS files.

There is a determined number of fixed files with fixed (or known)

names. Some examples of fixed files are:

CE Communications File

TL Tree List File

LL Logic List Eile

LI Lisplay Information File

Variable files are also randc access. The n umber and names

of variable files in existence for a user is variable (or unknown).

11

ilc :.anageti.ert -- -

Lxamples cf variatle files might te:

TI + TREEA Tree Intormation file for Lata ,_EEA

I + TREEA Tree Vector file for cata IRfEEn

TI + TREEXYZ Tree information file for data TERLXYZ

TV + TREEXYZ Tree Vector file for data hLEXYZ

L' + FIRITRY Logic information file fcr a logic

called FIRSTE?,Y

The plus symbol (+) denotes a sense of concatenaticon. This is

necessary to allow for the many data trees and lcgics tt at a user

may have in his/her directory.

Tempcrary random access files can be created by the CLPARS

application programs for specific purposes. in addition,

sequential files are used in the process of creating printer output

of data.

12

U

File 'a er.ent -- -j -LE S LE i,,LT::.L AX...

3. , .L .C IUTILE AE, LAC%

hnere is a basic set of system dependent file ar:iu'aticn -nu

accessing routines ithin CLFARS. TLe manipul ation routines are

called CCEEL , CChEAT(E , CCLCOE, CLELET(E), CELA:.(E), and Cf.E.

These routines perform the fcllowirng functions:

CCF, Cpen an existing "system" file

CChEAT Create ana open a nev. "system" file

CCLCSE Close an opened "system" file

CEELET Delete or remove a "system" file

OREhAk Give a new name to a "system" file

CM.ICVE Iove one "system" file to another

(rename a "system" file to another existing

"system" file)

The basic file accessing routines are called FGET and FFUT.

These two routines control the actual movement of data between the

computer memory and the CLPAFS variable and fixed files.

All the above mentioned file manipulation and accessing

routines (written in FCRTRAh) are at the lowest level in the

hierarchy of CLPARS file system routines. Therefore, these

routines will be referred to as level I routines.

ra step a bcve the system cependcnt file routines %.ili t- a

Stt of routines that the LLFAhE application programs use to invcke

the more primitive level i routines. These programs will be kro.n

as level 1I routines. The level II routirnes have the quality ci

being "system indepenoent." A few examples of some of these

routines are as follows:

CPEI4TR Cpens an CLPARS data or logic tree

(manipulation routine)

CREATR Creates an CLPAFS data or logic tree

(manipulation routine)

CFE NFX Cpens an CLFARS fixed file

(manipulation routine)

TIGCAF Gets the counts and pointers from a node

entry in the tree information file

(access routine)

Note that the level II file manipulation routines may use

level II file accessing routines. CFE14TR is still considered a

level II file manipulation routine because it uses COPEL to perform

the actual system file open. That is, CFE1NTR is a level iI routine

because it's a step above its corresponding file manipulation

routine, CCFE.N, which is a level I routine.

14

I I I ..

Fie Zr.ae Ert --

t ., elo,ieng araFrai s Ziv a- d itiJ c !racttriztic

teze roCuti s

S :ore Level ii file accessing routines may :iave

been cEsigned to perform format conversions wi.en

desired by the applications program. Icr exar.ple,

if' an applications prcgram requests the number of

nodes in a data tree to be returned into an integer

variable L, then the level II program it calls wil

retrieve the number of nodes from the proper tree

information file. Since all data is stored as

"real ," the level I1 program must convert the

number of nodes to an "integer" and place it in i.

o Applications programs neeo not "know" the format

of files; i.e., they do not need to know which

element of a logical entry contains a particular

item of data. They do need tc know the name and

calling sequence of the level II file access

routine. The reason for this is that the level 11

file accessing routines "know" the format of ti.e

OLPARS files. The application program need cnly

"know" the name and the calling sequence of the

level II file accessing routine.

15.

C If r.cre cler.ents are acdec to a Iogi ca tr ,

previcu Z1) desiFned level Ii file, accessing

rcutines may r.ot rEquire r:ccifiotic (i.e., I

the adcitions are mace at the end of the cgic

entr , as opposed to being inserted in the r:cce

of the logical entry).

c Al files utilized with this system will have the

same length physical record. Level II file

accessing routines are unaware of this length.

haximizing this length improves efficiency by

minimizing actual file accesses; minimizing this

length leaves more computer memory space for

applications programs. Nhysical record lengtn is

a machine-dependent value. (See Appendix F for

detailed CLPARS I/C notes on the RSX-11iM operating

system.)

Lefore giving a more Getailed description of the file system,

routines, two tables, which are used by these routines, n:ust be

described.

The first table, called the File Code Table (Cl), is uset to

relate a number to a file name known to the particular cerati-g

system. Thus, the portable LLPARS system will bE able to rEfer to

all files in a simple, machine/system-independent numerlc code

9 .1!

F1c 'LranacF.er.t --

re rreu tC LS the' "i!L ccce (cr FO[). Ti , F i 1c oo E Lb " E

. tt.c -± serves -s f.c cntry r:nCCX, ccr .r z tLe , -_ cf

n cr:,.atic. ;..ich is requirec for acccssir.! , real II e_ S cr t E

"coal" cPer tir.g system.

l fixed fIes, e :icL re cescribec in _ ater sections, have

tihe follcoing FCrs:

C 1 FV

TL 2 '.=7

LL - ZV C

I = 4 S. = 9

DV H 5S = 1C

For variable files, another scheme is used. Fcr eact user

cata tree there is an entry in the Tree List (TL) file, arc !or

each user logic tree there is an entry in the Logic List (LL) file.

These entries contain the tree name and FCEs for t ,e t~o files,

representing the data or lcgic tree. Ncte, the file codes for

variable files are not precetermined like the file coaes for fixed

files.

The File Code Table is system dependent and accessed directly

by the level I manipulation routines only. Appendix L gives the

format of the FCT as it will appear under the I, SX-11 cperating

system.

17

, ..

..

F'i! ,"a3 r. n r~ --

F L~ , Y2 L: -L2 It. ;i.t L .CE

I ie ecoIc table usec ty t e file rcut nes is the File i-.c ezs

Lra Contrcl Table (FACT). This table serves several purpcse-, al:

fcnerall relatea tc the set of files 'Lich arc cper" cr

accessitle to an CLFAhS prcgram aurin its execution. Ti.e entr

index tc this table is a File [eseriptor nurmer, or FIL. Ar er.trY

ir FAC' c nLains Lhe "systen," fi e name, the "logicaI urit nu.tar"

assignezt to tie file (LLth), space for a physical reccrc (PU.LFF),

the recorc numter of the physical recorc currently in t!e buffer

(CFF.) , the number of elements in the file header (h:E) , t.-:e number

of elements in a logical entry of the file (LEhE2, an a "put" flag

(PF) which incicates that a change has been 2ade by a "file put"

function in some porticn of the current physical record. (See

Figure 3-1) The FACT table is incorporated into a commcn area that

is available to all level I routines.

3.2.1 Level I 1%anipulation Routines -

CUPEN locates the first empty entry in the File Access and

Control Table (FACT) and sets a file descriptor (FID) to point to

that entry. fhe file code (FCE) for variable files is cttained

from the tree or logic list files before calling CCFEI;. The header

size (HNE, header number of elements) and logical entry size (LEiL,

lcgical entry number of elements) of the file must be given so they

Fili L.fiurt-

F--- L

1LL,. filerame :CFRI 1NE LEI"E FF FRLLF

LULX filena~me CH~l LL"E LENE Pi F T. 7-LF F

>.(1) LUI, ; filenrne CHI~N ENIE LENE PF FFLLFF

Figure >.1- File Access anid Ccntrol Table (FACT)

19

i:c a n ge!! e r.t L
FIL L T :CLT :ES 'i.L UEACE

car be entered into the IACL. Ti-e "1ut flag" (PF) znd tLE rLI.i.er

cf the current physical record (CFF..) Entries cf t.e FA,,CT till be

s~t to zero. GCFEI. obtains a "system" file r.ame frcm- the File Code

Table (FCT), via the FCL, and opens a "s~stem" tile. TL'e lcgical

unit numrlber entry within the FACT is also set by CCEEI..

CCEAT(E) creates a new "system" file for CLF.-Ah program use.

CCREAT is given the name of the file to create alcng with the

"type" cf the file. The "type" indicates that the file is one cf

tne following:

1. tree information file

2. tree vector file

3 . logic information file

4. logic value file

5. fixed file

All the above types have entries placed in the File Code lable

(FCT). The entry in the FCT is a "system" file name, created using

the "IhAME" and "TYPE" arguments of CChEAT. The file code of the

created file is returned to the calling program. CCREAT fills in

the FACT entries and returns a FACT pointer just like CCFEN.

CCLCSE first ciecks the "put" flag entry in the FACT (for the

given FIB) to decide whether it needs to write out the current

buffered record. It then frees the portion of the FACT, pointed to

by the given file descriptor, and performs a "system" file close.

20

File r. ze:,.er. t --

FiL _. L;' .. YE;,. hc LE " ,L LLACE

j CLLLE-I removes an existing "system" "i fr cm the ccp utEr

operating szstem's file structure. It also removes an Entry in t!he

riie Loce Table pointed to by the given file code argur:.ent, if ttLe

celEted file is a variable file.

ChEAN: chanbes the nar,-e of the "system" file name wit, in t-.e

File Cce Table pointed to by a given iile code.

CNCVE moves the "system" file, pointed to by one file coce, to

the "system" file, pointed to by another file code. This

essentially is a "system" renaming functicn, but done in a

cifferent manner than CRENAN. (CIRENAN is used when the new nan.e of

the file being renamed is not already in the FCT file. To insure

that there are no duplicate file names, CEENAtM must check the

entire FCT file.) The file pointed to by the second file code is

eliminated from the "system."

General Lotes: The contents of a file cannot be accessec

unless it is open at the time of access (the maximum numter of

files which can be opened simultaneously is limited by the numttr

of entries in the FACT and any particular system limitations). A

file should not be deleted if it is open. File deletion does not

remove an entry from the TL or LL file; that is the application

program's responsibility. In renaming files, the old file should

be closed before it is renamed; the net file is not opened by

0RENAN.

21

L

ile -nage:er. --

FILL Rj2. CU1II:E AID LSACE

.2.2 Level I File i.ccess Loutines -

Cne of the features of FCET and FPUT is the minir,-izaticn c:

actual physical record accesses. A descripticn of t-e FLE7

procedure follows.

FGET uses a file descriptor (FIC) to determine whici. FACT

entry describes the file to be accessed. From the prcce6ural

arguments specifying the logical entry of the file and the first

element within that entry, plus information in the FACT entr;

(number of elements in header and number of elements in loCical

entry), it is possible for FGET to compute the "absolute" element

address in the file of the first element to be retrieved. Lividinz

this address by the number of elements per physical record

(constant for all files) will give the physical record number

containing the first element. Comparing the required physical

record numter to the physical record number currently contained in

the memory resident buffer determines if the element requested is

already in memory; if it is, the element is returned to the

calling program; if it is not, a new physical record must be read

into the t ffer. However, before reading the new physical reccra,

a check of the "put flag" determines if any elements of the current

physical record were changed by a write (FPUT) cperaticn. If so,

the memory buffer is written to the file before the new physical

record is read into the buffer.

22

File an ez: , er, -- :
FILE fLTEL -CT L: AL, L LSACE

F V:T works in a similar manner. FPUT cor.putes the "aLsolute"

eIcent adcress, tLe physica I record number and the "relative"

accress in the physical record -number, of the first elerert to

rite. The cor:-putaticns are tLe same as those done in FCE-.

If the required physical record numter is not in tne FACT

frr.ysicl record buffer (memory resident) , tihe "put flag" is checkec;

to see if it is necessary to write out the current plhysical recorc

buffer before reading in the required record. If the "put flag" is

set, the memory buffer is written to the file. The required

physical recora is then read into the memory buffer. if an

end-of-file occurs, it is assumed that the file was opened for

create, and the memory buffer is zeroed out. Any other type of

read error causes FFUT to exit. if the required physical record

number is memory resident, no read is necessary.

The elements to be written to the file are transferred from

the calling routine buffer to the FACT physical record buffer. The

"put flag" is set to indicate that elements have been changed. If

there are more elements to be written (elements to be changed cross

block boundaries), the current physical record buffer is written to

the file and the next required record is read into the memcry

buffer. The process continues until all elements have been

changed.

.N
2____

i e .a n a 'er.n C. r.-
f~J ~l& Et.Elt -- .

FiLE SY"T, L*h hC I.2 .IL ULACE

-.. Level Ii Boutires-

Since there has beer. a large r.umter of level II routines

developed tc meet the needs of tie CLPAE2 applications programmer,

it is impossible to provide routine names and parar.eters in this

document (see CLFARS V-VI Loftware Feference kanuals). Lcwever,

several realistic examples are shown.

A routine naming convention is used, because of the number of

routines possible. Those level II routines that read frcm cr write

into a file have names of five or six characters cf the form FFX,%L

or FFXN1M M , where FF represents the file name type, .* is C for get

(re rd) or F for put (write), and t-YM or L. is a mnemonic for the

routine.

For example, there can be a routine which returns, as an

integer, the number of entries in the tree list (TL) file. The

code for this routine is suggested below.

ILTECER FUINCTIC11 TLCNCE (FIE)

IINTECEF FIE, N

L = FGET (FIC, C, 1, 1, X)

TLC.NCE =X

RETURI,

For this example, we have assumed that the number of the entries'

value of the !L file is contained in the first element of the

24

F ILE iY T: !CL . L-., A1,L LSACE

r.eaCer . Tn, value cf FIE., of course, came from c e nirn t!e tree

list tile. Ihis example illustrates that a level 1: routine can

cLazrn.e Lhe real. fcrrmat used for all filc clemerts.

As ancther example, t.e need a routine tc retrieve the mrear

vector icr a data set, given that we know the logical entry (LL)

f'or tlhis cata set in the TI file.

SULECUTIE TIGH: (FID, LE, I -IM, AEUF)

ii;IECER FIE, FGET

I: = FCET (FIE, LE, 17, t.LIF, AEUF)

RETURN,

.n this example, we have assumed that the mean vector starts the

17th element of a TI file entry.

2 5

r, -.- _ 1

FCh ALLE CLFAE FiLIIG LThLCTLRE

4. C IITRCEUCTICi

Each CLFAES user will have the following files in his/her

user's directory:

Communications (Cr)

Tree Irformation (TI)

Tree Vector (TV)

Tree List (TL)

Logic Information (LI)

Logic Value (LV)

Logic List (LL)

Saved Vector (SV)

Saved Iransformation
Matrix (SM)

Display Information (DI)

Display Value (DV)

Projection Vector (PV)

Scratch 1 ($I)

History (HS)

The contents of the first nine files are descrited in detail

in this section. The display files are discussed in Section 5.

The history file is described in Appendix E, under the CLPArS

ortt e CLPAh "iir..' Ltructure -- L

r. str u'..nt z cn nc,, aZ:.

4. 1 '1IL CC-.L.LICATCL. (C.) FILE

Te C,. file contains basic LLFAR system infor!.zrion tU.at ilI

bE accessed by almost all of the CLFAiS comi:-arno prcrarr.s. irce i:

ccr.ains no "data", it cnly has a Leadera. es eac(r Is pict-reo

in Figure 4-1. The following paragraphs explain the concejts of

currenL data set, current logic and current r:ajcr LLFt.,S c ticr.

The current data set is the treename, nodenane pair t~at die

user ;,crks with. it consists of all the vectors and structure

underneath that particular node. it is assigned using the ET-L

ccmand -, which prompts for the name of a data sct.

The current logic is the logic the user is in the prccess cf

designing on the current data set, or using to evaluate a test data

set. In the portable FCRTRAN version of CLFARU, w allcw mcre than

one logic file per data set. To do this, the user hill be fcrced

to assign unique names to all logic files. To begin a nev. .cgic

the command tNANELCG is used; to restore an old logic the cor.mand

"ETLCC is used.

The user will be able to store several logics for the same

data set. They may be complete or incomplete logics. -f they are

incomplete, they may be restored as the current lcgic and

ccr.pleted, Then a logic is bein designed cr evaluatec, its ccsign

set or test set must be the current data set.

27.4I

iort atlI C LF,, , 11r,, Lt ruc tur --
i.L CJb v.:C, iT,:cL, (CY) i-LL

El Event

I-C Current Treenar,.e

Tree inforv.&tion File FCL

Current iC Tree Vector File FCE

LatL ---
Set 1 1-14 Current Lode Iame
In fo. --

1 Entry Table Slot Lumber
of' Current Node

-- I
1 [NEIM

---------- -----------------------------

17-24 Current Logic L.ate
Current--------------------------------------
Logic 25 Logic information File FCL
info.. -------------------------------------

26 Logic Value File FCL

27 Number of Incomplete Logic Lodes
--------------------- -------------------------------------I

2E Empty (area for future use)

29-47 Screen Coordinate Information

48 Prompt flag (C = short prompt)
(1 = long prompt)

I--

45 One-space [in Factor (default = 5)

5C Two-space Cutoff Value
(default = 5C)

-- I

51 Instrumentation flag

52 Instrumentation Threshold

----------------------------- I

53 Current CLPARS Option # ...

54-63 ... and Cption lame

64-C7 CLPARS directory path string ,

Figure 4-1 The Communications File L.eacer

f ,]I.

IJ

For t.I E CL Ai.z, FillrI L rucz,.re
T1. - C ; L .: -. C . (C:-) F :'

ci. ;urrcnt ,..jor LLH-i_.2 oi.tior, :s te est r.ajocr CLF:.

c.;r :-an t 1.:t w as us E-. . t is "rcr:iem erej" so ti.st a- corrEct c-t c,

5ub secLuent cpticns :ny be c isplayec tc th:e uer. The deter::.iraticin

cf the set cf major CLFAF.S options and their optionr humoers can te

fcurnc in the CFT ITN test file (see A.ppendi: E)

For an explanation of the prompt flag in element 4E cf the C.

file, see Section 7.E.-3 of the CLPARS V Final report. The numbers

stored in elements 4, and 5C relate to CLFAFS displays. The use of

the cne-space bin factor is described in Eection 5.2. The tc

space cutoff value cetermznes whether a cluster plot or a scatter

plot is producec on a two space cisplay. If the number of vectors

in the data set is less than the cutoff value, a scatter plot will

be produced; otherwise, a cluster plot will be produced. The

default cutoff value is 5CC. The instrumentation flag is used to

enable and display the CLFARS instrumentation package. The prompt

flag, bin factor, cutoff value, and instrumentation flag ray be

altered by using the command CEEFAULT.

.2 THE ThEE INFCRf.hATIC,, (TI) FILE(S)

The Tree information file contains all necessary structural

information about a data tree as well as the mean vector and

covariance matrix for each noce of the tree. The Ti file consists

of a fixed-length header portion nd a fixec-length entry for each

node in the tree (see Figure 4-2).

2 i

'.um~ber Cf' riCCEs 3A treE

2 L.ivirnsior L I

2 Next availatle rocc position

4 ll~Next open entry zzt erna of' f'ile

5 Senior node poirnter

6 Erntry ILumber cr C

7 Lntry lur.ter or C

En~try TablE

L.ax+5 IEntry Lumrber or C

Cr.ax 1C

Figure J4-L The Tree Information File Eeader

3C

IC'~.~ C L i : --

1. T 1%L !.FC.:I,.:2:. (C7) I LL(2

. Lacer cnt-in :.- ru:: Ler r r ncz t e u n

t . t r..cr r.ce (i r. et::.er. , t:.e cir:.cnsicn of Lr.c vec trs (i

e cL::e:: , the ;,sition ir. he fiIe C Z..e next avt i . i3

c=ry)) entry (in Lei..en), n: the next open entry t t.e en of

ik fi e (in e'E ,ent .

-r order tc discuss the pcinter in eIEn- ent 5 cf the hea er, we

C..ust first explain the entry table and the meaning of any pointer

.n the TI file. ',hen a noce is placed in the TI file (initially,

or by son.e tree manipulation routine), it is identified tith a slot

in the entry table. ?,;s slot contains the actual entry. nut-ber

that the node resides at within the T: file. Any pcinter to a node

will pcint to the slot in the entry table with which it is

identified ano not to the actual entry in the file. 7he slot wi t

which a node is identified will not change, unless, of course, the

node is deleted, in which case the corresponding slot will te

zeroed.

The key feature of this scheme is that all pointers are

independent of the actual entry position of tre nodes in t~le TI

file. Lodes can be physically moved within the 1i file and

pointers residing within the node do not have to be clanged. The

only change necessary is a change to the slot content in the entry

table with which the nodes are identified. The addition cf the

entry table to the TI file header has greatly simplified m-any of

the tree manipulation routines.

rort Lle LLFA L FiIS r.' Ltructurc --
.;.E Ti:Ei :L.roF ,;Ic: (1) , ILE(L)

,e fen cr ncde poirter in elcr::er.t 5 cf tne .eader ten pcIr .ts

to t:se lot in the entry tCtlt t-: at is identifiec witih tLe ser.;or

ncce. The senior node is accessec ty first cbtair. ir. its er.tr'V

position from that slot. The entry table fcloc.s. :t contains

slots ior 1CC noces, wh-ich is the maximium number cf nocGes that a

cata tree may possess in portable CLPAFRS.

For each node in the tree, there will be an entry in tLe -L

file (see Figure 4-3). T1he large set of pointers is designed to

facilitate movement through the tree and, in particular, tc enable

programs to have easy access to the set of lowest nodes. Th-e

structure is completely general; any node of the tree can be

considered as the senior node of a complete tree. k diagram of the

pointers contained in elements 9 through l' of the TI file entries

is exhibited in Figure 4-4 (remember that pointers actually point

to slots in the entry table).

The vector pointer in element 15 is the entry number of the

first vector in the list of vectors (within the TV file)

corresponding to a given lowest node. If the node is not a lowest

node, this pointer is C. For debugging and maintenance reasons,

each node points (in element 16) back to the slot in the entry

table with which it is identified.

Acrl. L -L Ii. It~cr :LL

A1.ruvL Lic-, 1 L

i . ct vectors ;-t CLo

C" 6 t, Io~est rnoucs L .LC E
ULeneath tnis noce- C it 1o',.est roc

ii c f cf-.ildrer :.L C il: loveS nccc

rcce J.EVEl :L1=.1eve2. c,'~~

9 Parent Foirter PP if s(.nicr noce

aC -libling Pointer SE oirts tc r.Ext

a silbing; L if ror~e

P 11 First Child FLF Cif lc-.est ncc--
C pointer

N 12 First lowest node FLIF C 8.it' es ncce
T pointer

13 Lowest node link L,!L F s fnc 'et
Spointer anc(e, -i st

I lovest noce

14 Lo,. e st node back LIE P C it' rot -c, est
pointer anoce, -I 8 -r~z.

lorwest r.ce

15 Vector Pcinter in TV VP C if not a 1cvwezt
noce r node

1C Eack Pointer toa
1Entry Table EFET Fointz to thec slot

------------------------------- a in the entry t;,Le;C
with" which, the

I.,E A lS noce is identified

1LNLI.--------------------------

EIL-------------------------------- -- 2

Figure 4-1 The Tree Informaticrn File Entry

Pcrta-.lt OLF,,.Z ilinC Ltructurc
TLL TILL I, E>.A1C. (TI) F LL_(L

EEALEJ

e !A Lace

!! Senior floce !

F f P FF
F f P F P
F f F F F

F f P FF f F PF
F f P P

F ! !ssssss-! !ssssssss-!
F ! Lode ! ! lode ! ! Loce

F
F

F F P lb b1 F" P P
S F f F P 1 b b 1 Ff F P
F F f F P 1 b b 1 F f F PF F f F P 1 b b 1 F f F P
F FVfF P l b bl1 F f F F

1 b b 1 F =,
!sss-! 1 b b i F ! !sssss-!

L ode !111-! Lode !1111111 b b 1 F ! liode ! , Lode
!-bbb! !-bbbbbbbb b I F

b 1 F .. . : :: :

b 1 F F f PF l b
b I F F f F F 1 b
b l F F f F F 1 b
b l F f P F l b
b 1 =====:: 1 b
b 1 ! !ssss-! ! 1 b
b 1-! Lode !llll-! Vode !II b
bbbb! !-bbbb! !-bbb

P = parent pointer
s = sibling pointer
f = first child pointer
F = first lowest node pointer
1 = lowest noce link pointer
b = lowest node back pointer

(the - or ; symbol used at the end of a pointer neans that the
pointer is pointing to the node the - or is touching)

Figure 4- 4 Pointers in the TI file entries

-4

Fcrti.be L-dlr : Filir;L Ltru tL re --
Ti.L T P C T:: C :: , C n 7 L'u:.

-. L. coitional Ccnsideraticns -

a. he raa:e of" each nod e -.ust te distinct and con sist Cf one tc

foir characters (blank padcir. vil occur for "zz.or L"

names). The first character cf the name will e t°.e cn C

displayed on one-space or twc-space displays. There dr- -C

displzyable characters in the i£77 FCRT.Ar standard. Since

only lowest nodes are used in such displays, a maximum cf L5

lowest nodes will be allowed ('?' is used for prompting

purposes). An intermediate node can begin with the same

character as another intermediate or lowest node, but two

lowest nodes must begin with distinct characters. The

limitation on lowest noGes implies a maximum cf

approximately co nodes in an CLFARZ data tree. These

limitations can be eased (or further restricted) by changing

the program (LNICNE).

35

rort~1blt C[iAiS Filing& &rructure --

i'i2 7 L! IhFCI-QATiC: (Ti) FI E(

k. ou"ines tL-t perfcrr. raniFul :tion vith a cata trec usually

s*cre the entry table wilhlin z program array, so as to have

inz,.cdiate access tc the entry position cf a!, nodes in the

tree.

c. Eefcre ncdes are entered into a newly createc T! file, the

entry table is zeroed out so that no extraneous information

exists in it.

d. Then a node is deleted, or when several nodes are combined

into one ncde, entry spaces may be left in the TI file. in

these cases, it is up to the individual program to compress

the file or to leave the spaces. :n the latter case,

element 3 of the TI file header will point to the first tree

entry and the rest of the free entry areas will be linked.

The last free entry area will always occur after the last

filled entry, and is pointed to by element 4 of the TI

header. For a more complete discussion, see Zection 4.3.

3 -

?ortablc CLFAiS Fiinr Structurc --

TLLE T?.L5 IuFcR-:*A::oC (;) FZL[(L)

e. Stcrage cf tLe Ccvariance 1.z-trix:

Let C Le the covariance matrix for b clasz of vectCrs

of cimension n with elements C(i,j) . ince C is y7..etr c

(i.e., C(i,j) = C(j,i) for al1 'i' and 'if from 1 to 'r'),

it is only necessary tc store the lower trian[gular rcrticn

of C. ie sholl do this in a cne-dimensional array, cailed

The order in 6hich C is storeo in A is C(1,1),

C(n, 2; C(2,2) , .. , C(n,2); C(-,3), ... , C(,); ... ,

C(n-l,n-1), C(r.,n-1), C(n,r). That is, the cclumrs of the

lower triangular portion of C are stored one after the other

in their natural order. The protlem is to find a formula

for a given C(i,j) that will yield a 'k' such that

C(i,j) = A(k)

The address of an element of the last row and jth

column of an (n x n) matrix is given by

Q(n,j) = jn

To address a position 'i' in the jth cc!u-n tLat 1s not

in the last row (i < n), we have to subtract off tr;F

dista.ice (rn-i) wh'ch gives us

Q (i,j) = jn - (n-i)

icrtale CLFAES Filing Structure --

L T LE IFCF.WATII, (TI) FILL(t.)

iEcte, when 'i' equals 'n' we Ict cur first equatin

again.

Now, when we deal witl, only the loe r triar.gular

pcrticn of a square natrix, we will have to subtract off a

little more area. Again, we start with the fcra.ula that

gets us the address of tLe last row in the jth column of a

square matrix and modify it sc it looks as follows

C (iJ) = jr - <extra>

where <extra> means all the array positions in the upper

triangular region of the matrix, preceding (and including)

the jth column (see Figure 4-5)

<extra> = (j-1) + (j-2) + ... + 1

The sum of the numbers 1 to S is given by

Sum (S) = S (S+1)/2

Therefore, <extra> = (j-1) (j)/2

and C (n,j) =n - j(j-1)/2

i Ltructurt --

Si.L TL L FCi,;.A Lf . (TI) IL (S)

CC lumn r.

1 It 1

9 911
2 2

- - - - - - - - - - - -

3 3 n+2 2n

iI 4 r+3 Zn+I-

i,, r ra y

r- I r,- 6 4n-69

Figure 4-5 The Positions of the Covariance atrix
(C ij) i > j) irn th e a rr a A '

I I I 9

c r t2l C LFA F- L 'A.i L .. rLC t ure c- L

li. TREE I.FCIlJAI Ch (71) 1 1LE(-)

To address pcsiticr 'i' in the jth cclumn cf tho IC-r

triangula.r portion cf ti.is maitrix (i >= j) that is rzt in

the last roc (i < n), %e have to st:ttract off the saEC

distance (n-i) as we did in the previous case. Lcnce, for

(i >= j)t he position of C (i,j) In erray A is

k = jn - j(j-1)/2 - (n-i)

4.2.2 Iumerical Example-

Consider the following simple data tree called XEXAILE of

dimension four.

o *** (senior node)

/

o AIOD c ECE o C C E

/ \

o ENCD o ENICD

Lo
DI:CD and LUCE have been created by structure analysis

performed on ALCD. The contents of the TI file for this example

are shown in Figure 4-5a.

4C

Portable CLPAh.S Filing Structure --

THE TiLE !hFCi,-ATIC, (TI) EILE(S)

** AiCL E2;CD CICE L1.c E I E
ENT, IT ENTI EITfiY ELTRI E11TRY EhTRY

Element Leader 1 e 4 5 6

1 6 * B C L E i
2 4 * t ;1 . It I A

7 1* C G C C C
7 * L E C C C E

5 225 75 75 75 35 li 1umber of
Vectors

6 (*) 4 2 C C C Number of
Lowest
: N odes

7 2(A) 2 C 0 C C Number of
Children

8 3(B) C1 1 2 2 :L

9 4(C) 0 1 1 1 2 PP

iC 5(C) D C 3 4 0 6 c SF

11 6(E) 2 5 0 0 0 0 FCF

12 C 5 5 0 C 0 0 FLN F

13 0 0 0 4 -1 6 3 LNLP

14 0 0 O 6 3 -1 5 L NE P

15 0 0 0 1 76 151 186 VP

06 C 1 2 3 4 5 6 EFET

---------------------------- I

17-2C M M 1,! M
E E E E E E
A A A A A A
N N N 11 N N
S S S S S S

---------------------------- I

21 0 C C C C C C
C o O C 0
V V V V V V
S. S. S. S. S. S.

30 -

[0 Figure 4-5a The TI File for XEXAPLE
MAX 5 -- - -

41

[0

Fortazble CLFAIS Filinc Structure -- 4
TEE TFEE IIFc .ATIC. (TI) FILE(E)

4.Z.3 Creating Lew Trees From Cld Trees -

The CLPAFS data tree entry table plays an impcortant role when

creating a new data tree from a portion of an existing dLta tree.

its usefulness comes in the form of minirmal structural pointer

changes.

For example, the portion of an existing tree (TREEI) used to

create a new tree (TREE2) contains nodes 2-4-5, where 2 is defined

tc be the "current data node" (see Figure 4-6). The slot numbers

cf the nodes that make up the new tree will be identical to their

corresponding slot numbers found in the old tree. However, note

that the contents of the entry table slots (entry numbers) in the

new tree differ from those found in the old tree. The new slot

contents relect the actual position of the nodes obtained from the

old tree.

A few more changes are necessary to complete the

transformation of old to new. Each node in the new tree requires a

new node level. For those nodes that are lowest nodes, a new

vector pointer is needed (i.e. vectors are transferred, too). The

first lowest node in the new tree must have its lowest node back

pointer set to -1 (end link indicator) and the last lowest node

must have its lowest node link pointer also set to -1. The

"current node" of the old tree is now the senior node of the new

tree. Thus the node's name must be changed to ' the name of

the senior node in every CLPARS data tree. Also, the parent

pointer sibling pointer of the new senior node must be set to zero,

42

J

Fortable LP-]iS Filing Structure -- 4
L E EfEf IEFC..ATI.. i (TI) FiLE(S)

T R EE I

I portion of
/ \ TREEI Jsed TEEE2

2 " -- > 2 -- > 1

/ \ / \ /\

4 5 4 5

(hOTE: numbers in the above trees are slot numbers)

1 senior slot 2 senior slot
- - - - - - - - - - - - - -

slot nos. slot nos.
--- TREEI TREE2

1 1 entry table 1 C entry table

2 22 I

3 3 3

4 4 4 2

5 5 5 3

6 0 6

Figure 4-6 Creating a tree relying on
data tree entry table

43

I o ..

79

ort ab!c CLFIh.S Filig Structure -- 4
T.- TREE :.FCh..TICI. (TI) FILE(S)

indicating there are no arents or sitrlgs. Fir.ally, t.e neni'r

node slct r.umter (fcuno in tie o" heaer of the new tree) is set_ tc

pcint to the senior noce.

Ey using tr.is methcd of data tree creation, all the str.- ral

pointers in the new tree do not have to be chaned 1r exan4. e of

this methoc can be found in the subprogram '.XFRtK.

4.3 CLPAS FILE "EFEE" LISTS

inr the logic and data tree files of CLPAFS (and some "fixed"

files), we have the concept of a "free" list of entries or nodes.

These free entries or nodes at one time were "active" within the

tree structure, but were subsequently deleted, or made "inactive".

These inactive entries can now be used when a new entry or noce is

to be added to the tree.

'ithin the header of the tree files that have "free" lists

(the Tree Vector file does not have a "free" list), resides the

information necessary to maintain the list. This information

consists of a pointer to the head of the free list, a pointer to

the end of the free list (actually the end of the file), and the

number of active entries or nodes in the tree.

Each entry or node in the "free" list has a pointer to the

next entry or node in the list (this is a one way directional

list). This pointer resides as the first element in the entry or

node. (See Figure 4-7).

44

-4

Portab!e CLF-AR2 Filing Ltructure --

CLPARS FILE "rH.EE" LIZIS

!

i. c" entries in
a tree

Pointer to Lead of -
free list

Pointer to erc of
free list

A Tree File
Header

- - -- - - - - - - - -

///////////////// Tree Entries
///////////////// (or nodes)

///////////////// Shaded regions
///////////////// denote "active"

----- ---- ---- ---- entries.

- - - - - - - - - - - - -

---- --- --- --- > -- - - - - - - - - - -
End of File

Figure 4-7 Free List of a Tree File

45 i

a II
aI __ - .] .. .-a_" - I

Iortable CLFAZ.S Filing Etructure -- 4
tLLFA 'Z FILE "FFEE" LIST S

'.L.en th!e free list is empty, th,.e pointer to tr.e neac cf tr e

free .ist arc the pc- - 'r to the end of the free list will tcth te

cintin to the end of t',e file 'nhen an "active" entry beccrrc-s

"inactive" cr celeted, it is enterec into the free list in th.e

fclIoLing manner:

1. The pointer to the head of the free list is placed in the

first element of the deleted entry.

2. The pointer to the head of the free list is changed so it

points to the deleted entry.

3. The number of "active" elements in the tree is decremented

by one.

When a new entry is to be added to a tree, the free list is

consulted first.

If the pointer to the head of the free list is equal to the

pcinter at the end of the free list, then there are no "inactive"

nodes within the tree. Therefore, the tree (file) is extended to

accommodate the new entry, and both the "head" and "end" pointers

of the free list are reset to point to the end of the file. The

number of elements in the tree is incremented by one.

46

Portable CLF;,R Filing Lructure -- 4

hc'%ever, if he free list contains some "inactive" r.er: ber

(i.e., "head" not equal to "end"), tLe "Kead" pconter is usec to

obtain its new value from the "inactive" entry to which it is

pointing. Again, the number of elements in the tree is incremented

ty one. (Niote: the number of elements in a free list can be fcunc

by adding one to the total number of "active" elements in the tree

and subtracting that quantity from the "end" pointer.)

4.4 THE TREE VECTOR (TV) FILE

The vectors of a data tree are stored in its Tree Vector file.

The vectors are grouped together by lowest node to facilitate

access to the set of vectors in a lowest nocae and to free the TV

file of pointer storage (see Figure 4-8).

The header of the TV file contains the last logic designed (or

evaluated) on the tree as well as the file codes of the files that

make up that logic tree. It also contains a pointer to the enC Tf

the file. An entry in the TV file is identified with a vector. In

it, the vector is stored along with its ID, the first character of

the lowest node that the vector resides in and its temporary logic

indicator (see Figure 4-9). The temporary logic indicator will

contain the node number that the vector was placed at from the last

logic applied to the tree (except for nearest neighbor logic).

This element will be used during logic design or evaluation to keep

track of the logic node at which the vector currently resides.

This is necessary because a class may have vectors in several logic

nodes during logic design, and during evaluation it is a convenient

"U7

Portable CLAR- Filin., Structure -

TEE TREE ECT~ii (TV) FILE

Eler.ient

1 ch .ru 0Latest Logic Name

The File Code of the LI File
---- ---- ---- ---- ---- ---- -- eader

10 The File Code of the LV File

11 Next Cpen Entry at End of File

Vectors in a L~ode

- - - - - - - - - - - - - - - - - -

Vectors in z Node

------------ I

Figure 4-8 The Tree Vector File

Portable CLFARS Filing Etructure -- 4
THE Th EE \ECTCR (TV) FILE

1 rel. 1 rel. 1 rel. (ONDIt) rels.

Class ' Vector Logic Vector
Symbol Identifier Indicator ' easurements

Figure 4-9 A single CLPARS data vector (as found in TV file)

49

Portable CLFARS Filing Structure --

:iE TFEE VECTCR (TV) FILE

way of keeping track of the results. Norecver, if a logic desir

.s not completed in a given user session, then the lcwest logic

node that each vector resides in is saved in the temporary element

until the next session. The logic will not have to be r-evaiuatec

before the logic design is resumed.

Note that the length of a TV file logical entry is three more

than the dimensionality of the vector and essentially depends on

the dimensionality. This dependency presents no difficulty since

the dimensionality is stored in the Tree List file entry

corresponding to the data set.

4.5 THE TREE LIST (TL) FILE

The Tree List file is a list of the data trees that the user

has in his directory. It has a two element header that contains

the number of entries (data trees) in the file, and an alphabetic

list pointer. Each entry corresponds to a data tree. An entry

contains two File Codes (FCD) representing the files that make up

the data tree, the dimension of the tree, space for an 8-character

name of the tree, and an alphabetic list pointer. See Figure 4-1C.

When a data tree is added to the system, its Tree List entry

is placed at the bottom of the Tree List file. When a data tree is

deleted from the system, its entry in the Tree List file is filled

by the last entry in the file, and the count is decremented by 1.

Consequently, no free list is maintained in this file.

50

Portable CLPARS Filing Structure -- 4
ThE TREE LIST (TL) FILE

Elemnent

L Iumber of Entries

-------------------------------- eader
2 Alphabetic Link List Ftr.

--------------------------------.............
3 File Code (FCL) for TI File

4 File Code (FCL) for TV File

5 IvDI M

6 Alphabetic Link List Ftr.

--- I

7 T

8 R

9 E

10 E Entry 1

12 A

1 3

14 E

Entry 2

Figure 4-10 The Tree List File

51

Portable CLPARS' Fil i n Structure -- 4
ThE TREE LIST (TL) FILE

The alphabetic list pointers are used to keep the list entries

in an "alphabetic" order. All new entries to the TL file are

"placed" in the prcper order via these pointers.

4.6 ThE LOGIC hIIFCRFATICN (LI) FILE

For each logic tree that exists in portable CLPARS (i.e., 'or

each logic tree listed in the Logic List (LL) file) there will

exist a Logic Information (LI) file and Logic Value (L') file.

These files have a parallel in the TI and TV files associated with

each data tree. The LI file contains general information about the

logic tree and its structure; the LV file contains the actual

logic (decision criteria) for each node of the logic tree. In this

section the LI file is discussed.

The header part of the LI file has a fixed length; the length

is a function of the maximum number of "displayable" classes (i.e.,

lowest nodes in a data tree) that "e allowed for any data tree.

Figure 4-11 shows the content of the header, assuming 50 is the

maximum number of classes allowed.

Most oI the content of the header is self explanatory. NAN

(next available node, element 15) is the entry number (in the body

of this file) for the next node to be defined. In general, NANE

will be one greater than NNU (number of nodes used, element 17);

it will only be different in the cases where certain nodes, already

having logic defined, have been deleted. The current logic node in

element I is only used in conjunction with the design of 1 or 2

52

Loa - ~

Fortable CLPARS Filing Structure -- L
TEE LC.7C I;FCR :ATIC1. (LI) FILL

EI err ent

Name of[1-12 Design azta Set
(DES)

-- - - - - - -- - - - - - ---- -- - - - - - - - - -

13 D.IN - Dimensionality (of LES)

14 1NCLAS - !umber of Lowest Lodes
(in DES)

[15 NA, - Next Available Node Entry

16 NCE -Next Cpen Entry at end of file Counts

17 INU - Number of Nodes Used in
Logic Tree

and
1E Current Logic Node

(Group 1-S and 2-S)

19 RlvF -Use Reassociate lames Flag Pointers
(for Evaluation)

2C LVEL - Number of Elements in LV
File Entry

21 NILN - Number of Incomplete
Logic Hodes

22 Elank

23-26 Space for Name of First Class DDS

* (Cnly NCLAS Spaces Used for a Tree) CLASS

21,-222 Space for Name of 50th Class NAMES

223 A Priori Probability - First Class

* (Only NCLAS Spaces Used for a Tree)

272 A Priori Probability - 50th Class

Figure 4-11 The Logic Information File Heaaer

53

I I.

Portable CLPAhS Filing Structure -- 4
TEE LCCIC I FCFI.:ATICI' (LI) FILE

space group logic (this logic design is a two step process whcb

might not be completed).

The entries in the body of the LI file each describe a node of

the logic tree; the length of these entries is fixed and

independent of any data set parameters (e.g., the vector

dimensionality or the number of classes) , but it is machine

dependent because of the classes-present bit map, which is

described later. The logic node number cf' a node will be the same

as its logical entry number in the LI file. This gives a simple

and unique way of assigning logic node numbers. Figure 4-12 shows

the content and format of an LI file entry.

The following list shows the logic type code of the current

CLPARS logics, along with the appropriate subtype codes. (Logic

type and subtype codes are elements of the LI file entry).

Logic Code Type

0 - undefined (incomplete)

1 - pairwise logic

2 - group logic

1 - one-space

2 - two-space

3 - Boolean

3 - nearest mean vector logic

4 - closed decision boundary

5 - nearest neighbor

54

Forteble CLPAES Filirng Structure -- 4
TLE LCGIC IUFCI1.ATICi. (LI) FILE

Element

1 Logic Type Code (cr Entry Link)

2 Logic Sub-Type Code

3 Cption 1;umber of the routine that created the lcgic
at this node (0 if lowest node)

4 Node Level (Senior Node is Level 0)

5 Nunter of .odes Eelcw this Eode at Next Level

6 Entry Number of Farent Node (0 for Senior 14ode)

7 Entry Number of First Child Node

8 Entry ':umber of Next Sibling
(0 if Lo Next Sibling Node)

9 Entry Lumber (in LV File) for Start of
Decision Logic for this Node

10 Entry Number (in LV File) for Reject Strategy
for this Node - 0 if tio Reject Strategy

*--
Original Lesign Lata Set Class Name

11-14
for this Node (only for lowest nodes)

Reassociated Class Name
15-IL

for this Lode (only for lowest nodes)

19 VNodified Logic Flag

20 Number of Classes Present at Node (0-for reject)

21- ? bit Map Designating Classes Present at this Node

Figure 4-12 The Logic Information File Entry

55

FcrtaLle CLFAF S Filin - tructure
TEE LCGIC I.FCaYATICN (LI2 FILE

Since ;airwise lcyic, nearest mean vector icgic, cosec

decisicn boundary, and nearest neighbor locic have no subtypes of

logic, their subtype code will be zero (means undefined).

Closed decision boundary, however, does have a "sub-bicck"

code that is found in an element in the LV file (because nodes in a

closed decision boundary logic are allowed to have more than one

type of decision boundary). These sub-block codes are as follows:

1 - hyperrectangular sub-block

2 hypersphere sub-block

- hyperellipsoid sub-block

If the value of the logic type code is negative, it indicates

that the node had been defined and subsequently deleted and the

value is now a link pointer to the next available node entry. This

is used in conjunction with NAN and NNU elements of the header and

prevents lost "holes" in the entry portion of the file.

Elements containing node level, first child node, and next

sibling node facilitate searching the logic file entries for

drawing, and listing or deleting logic nodes.

Elements 9 and 10 are the entry numbers in the LV file for the

first entry containing the logic decision criteria and the logic

for the reject strategy, if it exists for this node.

56

Fortable CLFAEZ Filing Structure -- 4
TIlE LCCIC I:FC,.ATICI (LI) FILE

For completed logic nodes (i.e., nodes with only a sirle

class present), elements 11 through 11 .ill contain the name cf the

class at this node (design data act class name). 1f it happens to

be a reject node, the name of the "class" will be c"* ictoLgL

this is also the name of ohe senior node, there is no ccnflict.

.he type of logic code for a completed node will te 0 or undefined,

since there is no logic; there may be, however, a reject strategy

defined. Elements 15-11 contain a class name to be associated with

the original data class (reassociated class name). This name may

be used during logic evaluation to associate a test data class to

the original design data class. Zuring logic creation the

reassociated class name and the original design data set class name

are identical. The reassuciated class name may be changed by the

command REASNAN.E.

The classes present bit map, which starts at element 21, is

one place where it is necessary to deviate from the standard method

of using real format words for each element of a file. This item

is a binary string equal in length to the maximum number of classes

allowed in the system. If the ith bit of the string is is a one,

it indicates that the ith class (in the list of class names in the

header, starting at header element 23) is present; if the bit is

zero the class is rot present. To use a single real word, for each

class at each node, is felt to be excessive in storage space.

Thus, a machine dependent (because of word length) scheme is

utilized for this bit map. (Cn the FLP-i1 machines this bit map

will be contained in two real elements). For a reject node, the

57

1'

Fortatle CLFAFS Fi'irn,: E,;-ucture -- 4
I .E LCC. FC:, ATrCi (LI) FILE

titmap is undefined an2 the rumter of classes ,resent is zero. F r

lov.est (ccr:P1ete-C) ncte, the bi ap iS red efine and t he n uter

of classes Present is one. For this type of node, the first

element of the bitmap contains a pointer into the list of design

eata set class names found in the LI header. The pointer can be

used to obtain the name of the class that is associated with t"e

lcgic node. The pointer is also used as an "assigned class" index

during logic evaluation.

58

I F c or -.a '- e C L F E ,Z F .n r u ctL;r e '

.E LC0IC 1 Z:-7 , JICI. (LI) F.L_

S (L- F.4I e Ini iai izaticn)

.',. a lc;ic file is created by the ccn zanC 1,AI'ELCC, tLe e

file arc the L file will be createc. MA/.ELCC will set t,:.e

following values in the LI file:

Iame of cesign data set (LES)

Eata Set Eimensionality (NEIM)

TIe number of classes in the data set (NCLAS)

The next available node (NAN=2)

Next open entry at enc of file (;fOE=2)

Number of nodes used (NN1U=I)

Reassociated INames Flag (Rf;F=C)

List of Lowest ode Class N;ames

List of Class L Priori Probabilities

The above values are placed in the header; those mentioned

below are put in the first entry, which is the senior node of the

logit tree.

Logic type code (= 0)

Node level (= 0)

Number of nodes below (= C)

Ent;y number of parent (= 0)

'lumber of classes present (: NCLAS)

The bit map which indicates all classes present

59

Fcrtable CLFAkS Filing Etructure -- 4

TL LCCIC VALLE (LV) FILE

.7 TEE LCCI2 \ALUE (L') FILE

The LV file of a logic file pair contains the parameters or

vzriables which define the actual Cecision logic criteria fcr any

node of a logic tree. The entries are pointed to by the node

entries in the LI file. Entries of the LV file also contain the

blocks which specify reject strategy logic, if used at any node.

In keeping with the filing system ccnventions established for

portable CLPARS, all entries in the LV file are of the same length;

this length is established at the time of creation and is a

function cf the dimensionality of the data set on which the logic

is being designed. However, the different types of logics require

different amounts of storage. To accommodate this flexibility

within the LV file, the design is such that a logic block (the

definition criteria for the logic of a node) may be contained in a

number of entries of the LV file.

The entry in the LV file for a node contains the entry number

of the first entry of the logic block in the LV file. The first

element of an LV file entry is a link which points to sunceed r7

entries of that logic block. A zero in the first element indicates

that this entry is the last entry of a logic block. This linking

is necessary for the efficient deletion or ch,'ge of the decision

logic at a node.

60

l I-I lI l lil- Ii
k'

A.- $ "' 4" '"" -

Portable CLFARS Filing Ltructure -- 4
TL]E LOCIC VAL E (L'v) FILE

The lengtih of an entry in the LV file is L-Il+2 with a minimum

length of 12 elements. 71iis length was chosen after analyzing tr.e

space requirements for the different types of lcic blocks and

optimizing the choice of length as a trade off between unused space

and ccmplicated structure. 7he minimum length of 12 is needed in

the Fisher pairwise logic block.

Entries that comprise a logic block do not have to be

contiguous; since they are forward linked to each other, they dc

not have to be sequential. They will be non-sequential only in the

cases where a previously designed logic has been deleted. Elements

in the header and the link element of each entry implement this

capability.

The LV file header contains three elements; these are defined

in order below:

Element Contents Initial Value

1 NEU total number of 0
entries actively used

2 NOE next open entry at end I

of file

3 NETU next entry to use 1

NOE will differ from NETU only if there has been a deletion of

defined logic. The total number of entries that could te found in

a "free" list (deleted entries list) is found by NOE - (I4EU + 1).

Initial values, set when the LV file is created, are shown at the

right.

61

Portable CLFARS Filing Etructure --

711E LLCIC VALUE (LV) FILE

The use of the first element of each entry, the rext ertry

link or link element is similar in all cases. If' the number is

positive, it is the entry numtber of' the next entry in the block;

if it is zero, it is the last entry used by a block; if it is

negative, it indicates that it was a deleted entry, but its

absolute value is still treated as a link (now a link of deleted,

and available for reuse, entries). The last entry of the string of

deleted entries contains a link to NOE, the next entry after all

used entries. (See Section 4.3 on "free" lists).

In addition to the link element which forward links all

entries containing logic for a node, certain entries may contain a

link to a particular portion of the logic. This is done to

facilitate getting to certain sections of the more complicated

types of logic or logics which permit suboptions (e.g., the INMV

command). Figures 4-13 and 4-13a illustrate this multiple linking.

Note, in the Fisher Fair logic block example in Figure 4-13A, there

are three forward links with a value of zero; one for the main

logic block, two for auxillary logic regions. Each represents the

last entry of their respective regions.

Figures 4-14 through 4-24 describe the file entry formats for

different types of logic blocks.

62

Portable LLPARS Fiin Etructture -- L
7'H E LOGI VALLE (LI) FILL

1st Entry nth En~try

-------- --------

I I I

2nd Entry 1 1 n+*2~ Entry

*>

*-------------------------.

I11 rm a I ink - -

3rd'util Entry> n+3. Entry 1
I I I

- - - - - -- - - - - -

Fg413Multiple Linkin V-ti A Logi Elry

63I

Portable CLPAhZ Filing Structure -- 4
ThE LOGCC V.4LUE (Lid) FILE

LoCic block
heacer (pointer to here found in LI entry)

/1/11/11111/ ... /111!1111 /.. . /~t11111-

/ node number / / noce nbr. /
I class pair I associations I assoc. i

-- / links ptr. / / / / /
///////// //////////////// ///////I/

>////////////////// ///// ------------------
-/ 1--->... to next entry

--- 1 Class Fair Links / of class pair
from last / / links (CFL)
entry of' I /

CEL I~~ IIIII II~llllllll

V V V,

.... I aux. ptr. / / class pair/ aux. ptr. /
I / / header / / I
/ (cph) / / (cph) / (cph) /
/11//11/I/I/I/I/I/1/////I//I//

44 / I I I I4 /
/ fisher / I fisher / / fisher /
/ direction / / direction / / direction /
/1 / / / 4/ /
IIIIIIII IIIIIIII IIIIIII

->///////.. >/ //I//I >/// zero ///
/ / / / 4 / /
I fisher / I fisher / I fisher /
orthoganal/ / orthoganal/ orthoganal/

cl .vs. c2 ci .vs. c3 c(n-1) .vs. c(n)

-I zero II -->/I// zero II//I
/ / / / / /
/ optimal discriminant logic / / any auxillary /
/ / I / / logic region /

Figure 4-13A Exsmple of Fisher Fair Logic Elock

64

Portable CLPARL Filing Structure -

TI:E LOGIC VALUE (L%'/ FILE

Entry %:uitier 1

Element Content

1 Link Element - Entry Lumber of' Second Entry

2 Number of Eoundaries (= 1 or 2)

? !;cde INumber Associated 16ith Right-P:ost hegion

4 Node Number Associated 6ith Left-Nost Region

5 Node Number Associated Thith Middle heg-ion
(if 2 Boundaries)

6 Right Threshold Value

7 Left Threshold Value (if 2 Boundaries)

Entry Number 2

Element Content

1 Link Element C:0)

2 -

> NDIM Liscriminant (Projection Vector)
* Coefficients

NLDIM.+2 Number of Vesurements Lsed

Figure 4-~14 One-Space Croup Logic Elock Format

65

Fortable CLPAFS Filing Structure --
ThE LCGIC VALUE (LV) FILE

Entry Lumber 1

Element Content

1 Link Element

2 Number of Loundaries - NB (=1 to 2)

Number of Segments in First Loundary -!!S

(1 1 to 5)

4 Number of Segments in Second Eoundary - ! S(2)
1: 1 to 5) (= C if LE = 1)

5 Link Isord to Entry Containing discriminant
vector of First Segment of Second Loundary
(if it Exists)

6 Link to Entry Containing First (and second,
if it exists) boundary segment discriminant
value thresholds.

7 Lode Number Associated k.ith Excess Fegion

8 Node humber Associated Uith Convex Side of
Boundary 1

9 Node Number Associated With Convex Side of
Boundary 2 (Ignored if NE = 1)

Remaining 1S(1) + NS(2) Entries

Element Content

1 Link Element

2 -

!* 1

> NDIM Liscriminant Coefficients

NDIM+1 -

Figure 4-15 Two-Space Group Logic Block Format

66

Portable CLFARZ Filing Structure -- 4
TEE LGGIC WALUE (LV) ILL

Last Entry

Element Content

Link Element

2 -

> Threshold Values
* I

(NCTE: 2nd-boundary thresholds appear
10 - immediately after those of 1st

boundary, with no intervening space)

Figure 4-15 Two-Space Group Logic Block Format (continued)

67

* 4r

Portable LLPARS Filing 'Strurture -- 4
TI;E LOGIC V-ALUE (L'v) FILE

Entry !iumber 1

Element Content

1 Link Element

Number of Characters in Eoolean Statements-
NC (max 132)

3 Node ',,umber Associated With True "Zide"

4 Node Number Associated With False "Side"

Remaining Entries - Number Sufficient to Contain NC Elements

Element Content

1 Link Element

> Characters of Eoolean Statement

1NDIM+2-

Figure 4-16 Boolean Group Logic Block Format

68

Portable CLFAi,.iS Eiling Structure -- 4
T14E LCCIC VALUE (LV) FILE

Entry Lumber 1

Element Content

1 Link Element

Number of Classes - ITCLAS
Weight Flag: 1 - No heights,

2 - 1.0eighting Vectors,

3 - Weightirn Matrices,
--Quadratic Classifier

4 Link Element to First Entry Containing .ear.s

5 Link Element to First Entry Containing Veighting

Vectors

6 Link Element to First Entry Containing leighting

M atrices

7 ignore Measurement Flag: C - Use All,

1 - Ignore Some

8 Peject Flag: C - No Reject Eoundaries, 1 - Use

Reject Eoundaries

9 Link Element to First Entry Containing Reject

Values

10 Link Element to First Entry Containing

Determinants

Entry Number 2

Element Content

1 Link Element

~2

> Measurements to be Ignored Flags

*1 Use Corresponding reasurement
0 Ignore Corresponding Measurement

NDIK+1 -

NDIM+2 Number of Measurements Used

Figure 4-17 Nearest Mean Vector Logic Elock Format

69

s

Portable CLPARS Filing Structure --

THE LOCIC 1VALUE (LV) FILE

Next Croup of Entries - Number sufficient to contain LCLAS+1

Elements

Element Content

1 Link Element

2 Node Number Associatea w/rejects

3 Node Number Associated w/first class

Node Number Associated w/last class

Next Group of Entries - Number sufficient to contain
NCLAS elements

Element Content

1 Link Element

* -

> NCLAS reject boundary distance values
. :(square of value entered by user)

Next hCLAS Entries - One entry per class

Element Content

Link Element

* I

> NDIM Mean Components
* i

NDIM+1 -

Figure 4-17 Nearest Nean Vector Logic Elock Format (continued)

70

a1

Portable CLPAFS Filing Structure --

7iE LCCIC VALUE (L) ILL

'ext I.CL Ir tries - Cne entry per class

Element Content

1 Link Element

> NDIN Weighting Components (variance vector)
*I

NDIN+1 -

Next NCLAS*((NDIM/2)+1) Entries; (NDIM/2)+I entries per class

Element Content

Link Element

2 -

> NDIM*(NEIM+1)/2 packed weighting matrix
* g components (inverse of covariance matrix)

NDIM+ -

Remaining Entries - Number sufficient to contain NCLAS elements

Element Content

1 Link Element

> NCLAS determinants of the covariance matrix of
* I each class

Figure 4-17 Nearest .ean Vector Logic Elock Format (continued)

71

?:ro-oK . L717!S F'iling Lzrucizrc -- :
.. . . r l ,, . F -L

E

- -- - - - - - -

I Link El o::cnt

"iue:ber of C!.ozes

= ..inil::u::: 'lot: Count:

Link Kc::;cnt to first cn'," cotz ,nir cl
pair " inks

:oxt ,r.up of Entrios oA.ic node--ZOta class -.sccizzccns)
:Au:ber sufficiOnt to contain :;CLA+2 eLczer.ts

Element Content

I Link E1 c::nt

2 H:odc urbcr Associatc! -../rejectz

:;ote :.u..,t-or Associatcc I ;/firsz slss

:,ode ::u I'ser AsscciaseCd '/lest ZlasS

N'ext Group of Entries - "umbcr sufficient to contain

Mlass pair links) 'ICLAS*(:CLAS-1)/2 elc::ents

31 ement Content

Link Element

Link Element to class pair header entry for
class I vs. class 2

Link Element to class pair header entry for
class 1 vs. class 3

etc.

Figure 4-18 Pnirwise Logic Elock For:nat

72

II

- - - - -- - - - - - -\

r T E
.

: - . ,

. . . . r - . , . . - .. .

.r

-n -, -'c 'Ln :.::

.r. l -.- n brr - z

CI ~ - o ...-. .

5 - " in*ui -'

").,: r "f t-'e c ds -r ondr itG

i t c,,i r -- tI

cto fir zt c IZ zs cof c01: 7-z fE
:s : c arrE, en cn z: e for a., :2si c::i

O .i n n0 ',e s f cr(i. cr l t s

:'c-x t, fer d co IFs of ' If - '"r s of n t-
as2 n z..e array in o:o.eaer, 3r r ase t

L ic nodes 'a3id 1))

i > Five Fisher threshocds
/

11 /
/

12

c:..jur .4- Pa ?irwise Lc;c 5lock ?or:,at (con tn ', ,

.9 * 1.

Fcrtatle C.LPARS Filing Structure -

TEE LCCIC \ALUE (LV) FILE

Second cf Three Entries

Elen ent Ccntent

1 Link Element

* > Coefficients of Fisher Eirection
riLIk.+1 - /

V

Third of Three Entries

Element Content

1 Link Element

2 -

* > Coefficients of line perpendicular to Fisher
/ Lirection

Figure 4-18 Pairwise Logic Elock Format (continued)

74

-. -. -

Portable CLPAIS Filing Structure -- 4
THE LCGIC VALUE (LV) FILE

Entry Lumber 1

Element Content

1 Link Element

2 Number of Ecundaries - E (=I)

4 Number of Segments in Boundary - I S (1 1 to 5)

UNUSED

6 Link to Entry containing boundary segment
discriminant value thresholds.

7 index to node-number-associated-with-classes
-in-the-excess-region entry (i.e., the index
plus one points to node associated with the
Excess Region)

C Index to node-number-associated-with-classes
-in-the-convex-region entry (i.e., the index
plus one points to node associated with the
Convex Region)

UNUSEE

Remaining NS Entries

Element Content

1 Link Element

2 -

> NDIM Liscriminant Coefficients

NDIM+1 -

Figure 4-18a Cptimal Discriminant Logic Elock Format

75

~ I I

Portzble CLPAR-1 Filing Structure 4-
IHE LGGIC VALUE (LV) FILE

Last Entry

El emrent Content

1 Link Element

> Threshold Values

10 -

Figure 4-18a Optimal. Ciscriminant Logic
Block Format (continued)

76

Portable ULFARS Filing Structure -- 4
ThE LOCC VALU'E (Lbv) FILE

Entry Lumber I

Element Content

1 Link Element

Number cf classes - ICLAS

Flag: 1 - create node of overlapped vectors
C - reject overlapped vectors

4 Link element to first entry containing link
elements to sub-blocks for each class

Next Group of Entries - Number sufficient to contain
NCLAS+2 elements

Element Content

1 Link element

* \ CLAS+2 list of node numbers associated
> with each of NCLAS classes, the reject

/ node and the overlap node

Next Group of Entries - Number sufficient to contain
2*NCLAS+1 elements

Element Content

1 Link element

2 Link element to the last entry of the
preceding group of entries
(which contain the node numbers)

3 Link element to the first entry of the
sub-block for the first class

4 Link element to the last entry of the
sub-block for the first class

Figure 4-19 Closed Lecision Boundary Logic Elock Format

77

Portable CLPARS Filing Ztructure -- 4
TEE LCGIC UALUE (LV) FILE

Entry Lumber 1

Element Content

1 Link Element

Sub-block type 1 1

* > NDD,1 Threshold
* Type Flags: C = user defined
* 1-200 = percentage of'

data range (lCo
is the default)

!JIM+2 -

Entry Number 2

Element Content

1 Link Element

2 Easis vector type: 1-coordinate, 2-overall
eigenvectors, 3-specific
class eigenvectors

3 -

> NDIM low threshold values

NDIM+2 -

Entry Number 3

Element Content

1 Link Element

2

> NDIM high threshold values

NDIM+1 -

Figure 4-20 Hyperrectangular Sub-block Format

78

AI

Portable CLPAR$ Filing Structure -- 4
THE LCGIC \ALUE (LV) FILE

Next 1.EIN Entries (not used if coordinate basis vectors)

Element Content

Link Element

> NDIM components of basis vector

NDIM+1 -

Figure 4-20 Hyperrectanular Sub-block Format (continued)

79L

Fcrtable CLFARS Filing Structure -- 4
THE LCGIC "vALUE (LV) FILE

Entry LIumber I

Element Content

1 Link Element

2 Sub-block Type (=2)

3 Center Vector Type: 1-mean of class,
2-midrange of class, 3-user defined

hadius Type: C user defined
1-200 = percentage of data range
(100 is the default)

Radius (squared) of hypersphere

Entry Ihumber 2

Element Content

1 Link Element

2 -

> NDIM components of center vector

NDIM+1 -

I.

Figure 4-21 Hypersphere Sub-block Format

80

Portable CLPAhS Filing Structure -- 4
TME LCGIC VALUE (LV) FILE

Entry Lumber 1

Element Content

1 Link Element

2 Sub-block type (=3)

3 Center vector type
(see hypersphere sub-block for code)

4 "C" value type (see hypersphere sub-block
radius type for code)

5 "C" value (corresponds to radius
in hypersphere)

Axis Type: C = user-defined; 1-200 of
default axis lengths (100 is the default)

Entry humber 2

Element Content

1 Link Element

2

> NDIM components of center vector

!iDI'i 1 -

Figure 4-22 Hyperellipsoid Sub-block Format

81
!-,,I

Portable CLPARS Filing Structure -- 4
THE LCGIC VALUE (LV) F.ILE

Entry Lumber 3

Element Content

1 Link Element

* I

> NDIM axis lengths
* I

NDIM+1 -

Remaining NDIM Entries

Element Content

Link Element

2 -

* I

> NDIM components of row of weighting matrix
* I

NDIM+1 -

Figure 4-22 Hyperellipsoid Sub-block Format (continued)

82

-1
82'

* *1

Portable CLPARS Filing Etructure -- 4
THE LLGIC VALUE (LI.) FILE

Entry Number I

Element Content

1 Link Element

SNumnber of characters in Loolean Statement-
NC (max 132)

- Entry ilumber (in LI file) for first
(if more than 1) logic node to use this
reject statement

Remaining Entries - Number sufficient to contain 1.C elements

Element Content

1 Link Element

> Characters of Eoolean Statement

1NDIM -2-

Figure 4-23 Independent Reject Strategy Elock Format

83

'RO"i

Fortable CLPARS Filing Structure -- 4
THE LCGIC VALUE (LV) FILE

Entry 1.umber 1

Element Content

1 Link element

2 :Number of classes (NC)

3 K - number of nearest neighbors to be
used in evaluation

4 Ignored measurements flag (=1 means
there are measurements to be ignored)

5 Link to Ignored measurements vector

Entry Number 2

Element Content

1 Link element

2 -

thru > Tree name of reference patterns

9 -

Entry Number 3

Element Content

Link element

2 -

> Measurements to be Ignored Vector
* I

*= 1 Use Corresponding leasurement
= 0 Ignore Corresponding Measurement

NDIM+1 -

NDIM+2 Number of Measurements Used

Figure 4-24 Nearest Neighbor Logic Elock Format

84

Fortable CLFA F Filinug Structure -

TEE I CCIC VALUE (LV) FILE

Remaining Entries - N~umb.er Sufficient to Contain !NC+1 Elements

Element Content

1 Lin~k element

- N~ode Lumter Associatec w/first class

- ~Node L.umber Associated w/last class
Ii C +2 ode N~umber Associated w/rejects

Figure 4-24 Nearest Neighbor Logic Block Format (continued)

85

Fortable CLPARS Filing ftructure -- 4

THE LCCIC LIST (LL) FILE

4., THE LOGIC LIST (LL) FILE

The Logic List file is a list of the logic trees that exist in

a user's directory. It has a two element header that contairns the

number of entries (logics) in the file, and an alphabetic list

pointer. Each lorTic corresponds to an entry. An entry contains

the two File Codes (FCLs) representing the files that make up a

logic tree, space for an 8 character logic name, the dimension of

the tree, the tree and class name pair, an incomplete logic flag,

and an alphabetic list pointer. See Figure 4-25.

When a new logic is added, its entry is placed at the bottom

of the LL file. When a logic is deleted, its entry is replaced by

the last entry in LL and the count of the number of entries is

decremented by 1.

The alphabetic list pointer, here, has the same functicn as

the alphabetic list pointer found in the Tree List (7L) file.

4.9 THE SAVED VECTORS (SV) FILE

The SV file is a list of stored projection vectors that can be

accessed by name using an arbitrary vector projection operation

(SIARBV, S2ARBV, L2AREV). The header of the SV contains the number

of vectors (see Figure 4-26). Information on each vector is stored

in an entry. Vector names are one to eight characters in length,

start with a letter, and are stored at the beginning of an entry

followed by the dimension and the vector itself. The length of an

entry is the maximum vector length allowed for normal CLPAIRS

86

AD AD8A 31 PAR TC HNOLOGY CORP NEW HAkTFORO NY V.F/A 9/2
ON-LINE PATTERN ANALYSIS AND RECOGNITION SYSTEM. OLPARS VI. PRO--ETC(U)
JUN 82 S E HAEHNK D MORRIS

UNLASSIFIED PAR A2-5 NL2n3flllllll l
EEEEEEEEEEElhE
EllEEEEEEEEEEE
IIEEEEEEEEEIIE

EIIIEEEEEEEEEE

Portable CLFARS Filing Structure -- 4
T!LE LLCIC LIST (LL) FILE

Element

1 .umber of Entries

-eader
2 Alphabetic List Fcinter

--i .--
4 File Code (FCE) for LI File

4 :.File Code (FCE) for LV File

5-12 Logic Name
-- Entry 1

13 gNEIN of Lesign Set

14 Alphabetic List Fointer

15 Treename, classname
t hru
26 of design set

27 :ncomplete Logic Flag

--------------------------------- ------------

3+25(k-1) FCL for LI

FCE for LV

Logic L.ame
----------------------- Entry k
NLIM of Lesign Set

Alphabetic List Pointer

Treename, classname
of design set

--------------------------------I

2+25k Incomplete Logic Flag

Figure 4-25 The Logic List File

87

Portable CLPAHS Filing Structure -- 4
T[HE SAVEL VECTCRS (St) FILE

El emenr.t

1 Number of Vectors
------ He ade r

2 Elank

3 Namre of
thru

1C Vector 1

11 Dimension of Vector 1

12 V I Entry 1
E

thru C
T

610

Figure 4-26 The Saved Vector File

88

Portable CLFAFS Filing Etructure -- 4
TEE SAVEL VECTCRS (5',) FILE

operaticn, which has been chosen to to be 50 fcr the FrP-11 systems

Fder 1SX- 11. Hence, vectors in excess measurement mcde may nct

be stored in SV.

'hen a vector is deleted from the SV file, the last entry is

moved up so that no "holes" appear in this file.

The command VECTOR is used to manipulate the SV file. VECTCR

has five options:

I. Delete a saved vector.

2. Make a line printer listing of all saved vectors

including name, length and the components of the

vector.

3. Display at the screen the information in 2.

4. Display at the screen one named vector.

5. Save a user-supplied vector or the projection

vector(s) used in a one or two space projecticn.

89

.4J

Portable CLFAR. Filing structure --

THE ;AVEL Ti ,,SFCR',,ATIC,. .ATFi, (2*:) F:LE

4. 1C THE $A"EE TPALSFCRV .ATIOL MATRIX (St'.) FILE

Under CLPARS, it is pcssible to save a measurement

transformation for use on other data sets (see the 1,.EAZ'.FhLV

command). This option is useful for tie follcwing reason. If a

locic is Gesigned on a transfcrmed tree, and if c test cata set is

run through that logic, the test data set shoulc be first

transformed in the same way as the design set. !.hen the

transformation information is stored away it can be easily "pulled

out" and used on the test data set.

The transformation information is saved in the Saved

Transformation Matrix (S?;) File. After such commands as EIC-'XFfM,,'

or ?;ORXFR,, have completed their transformation, the programs will

ask the user if (s)he wishes to save the transformation matrix.

(The EIGNUFR, transformation is saved as an (iiE)x(k) matrix,

where Ik' is the number of eigenvalues chosen by the user; the

X'OREXFRV transformation is saved as an (NDIN)xl matrix or vector).

if the user answers yes, these routines will save the matrix in the

SM file. The user can then use the saved matrix to transform

another data set. The command that will accomplish this is called

MATXFR-i. It will prompt the user for the name of a saved matrix

and then transform the current data set using the matrix (assuming

that there is dimensional compatibility). The name of a matrix

must be from one to eight characters in length, the first being

alphabetic and the rest alphanumeric.

S0

jt

Fortable CLFAEL Filirn Structure --T E S E TT, .'Z I: r, "I' I C1 T(.IT.E SAXEE[. ... ' CL- Ci; ,'.A-TL .' (.,) rLE

n e ac iticna cimcrn. a, mmArF-X, id T necessary f;r z:e

mainterance cf t h > fii. ,. i .as t.e fcllc.,ing c Tions:

. elete a savec r-atrix;
b. ;*:ke a lire printer listing of the nme, type,

dimension, and entries cf a saved natrix;
c. Cisplay at the screen the name t pe, di:;er.sicn,

and entries of a saved matrix;
d. Eisplay at the screen the names, types, and

dimensions of all saved matrices;
e. Save a user supplied matrix.

;,hen a matrix is deleted, entry spaces are left in the S,

file. in this case, element 2 of the SM file header u4ill point to

the first free entry and the rest of the free entry areas will be

linked. The last free entry area will always occur after the last

filled entry, and is pointed to by element cf the SIE file header.

The structure of the header of the SI." file is pictured in Figure

4-27. MA,.:*TR stands for the maximum number of saved matrices the

uiser may have. LAXMTR set equal to 1IC should be more than

sufficient.

An entry in the SM file (Figure 4-28) will be the length of

the maximum feature vector allowed in CLPARS, without going into

excess measurement mode (which is 5C for the FDP-11/7C under

RSX-11M) plus one to allow for a link pointer. For IICR.NXFRMK, one

entry will suffice to store the (NDI.)x1 transformation matrix.

For EIGIXFR., the transformation matrix will be stored in as many

entries as necessary.

91_

'I #.

Fortable CLPARS Filing Structure --

TUE SA'EE TRACSFCRMATICN MATRIX (SM) FILE

Element
1 Number of Saved Iatrices

I--

2 Pointer to the Eead of the
Entry Free List

Pointer to the End of the
Entry Free List

I--
41 tNumber of Vectors in File

5
through N 1ame of Saved Matrix "1"

12
Descrip-
tion of 13 Type *
Hatrix "1"

14 t1DIM
I--

15 Entry # of start of Matrix **
-- -- - - - - -- ---

-- -- - - - - --- ---
Name of Saved Matrix "FAXMTR"'

scrip-
tion of Type
Matrix KAXNTR----------------------------------

NDIM
I--

4+(11*MAXMTR) Entry No. of Beginning of Matrix

• NORMXFRM = -1
EIGNXFRM = R, where R is the no.

of eigenvalues used.

* 0 implies not in use

Figure 4-27 The Saved 'ransformation
Matrix File Header

92

At

Portable CLPARS Filing Structure 4-
THE SAVEL 7RAII-FUh*.ATIG, 1-ATrEIX (2'N) FILE

El ei.en t

1 Lin~k Pointer to 1.ext Vector in Matrix a

- -

2

thru V E C T C R

1 EIV1+1

* -0 implies last vector (row) of matrix

Figure 4-26 The Saved Transformation
Matrix File Entry

93

SECTICIN 5

DISPLAYS

5. C 1 T RCDUCTICI:

There are six types of displays that CLPARS can produce:

two-srace cluster plots, two-space scatter plots, rank order

displays, confusion matrices, one-space macro plots, and one-space

micro plots. Since the information to create each of these types

of displays is so different, the structure of the display files

will be discussed individually by type of display. However, each

type uses (at least) two files: the Eisplay information (DI) file

and the Lisplay Value (DV) file. The Li file will contain

necessary controlling information and pointers into the EV file,

and the EV file will contain values to be displayed. in general,

the values to be displayed are saved so that the process of

redisplay (that is, recreating the last display on the terminal) is

a simple one, and display manipulations (e.g., elimination or

addition of a class on a two-space display) does not require a

complete regeneration of the display.

S4

.. . ..1

Lisplays --
1.TRCZUCT!C!

The first element ir. tlc LT file will a! ways Le a di-play coce

fC1zdlcws:

0 = not set

1 = two-space cluster

2 = two-space scatter

= rank order

4 = confusion matrix

5 = one-space macro

6 = one-space micro

5.1 ThO-SPACE DISPLAYS (SCATTER AND CLUSTER)

A two-space scatter plot is a two-dimensional representation

of an n-space vector, with eac: vector located at its "natural"

projection point on the screen.

A two-space cluster plot is a two-dimensional representation

of an n-space vector, with each vector "forced" into a location

within a grid. If one or more vectors from a single data class

fall within the same grid location, the display symbol for that

class is presented. If vectors from two or more data classes fall

within a single grid location, an asterisk is displayed.

The actual presentation of the two-space cluster display is

generally faster than the two-space scatter display, especially for

a large data set. However, since each character displayed may

represent one or more vectors, in some cases this display could be

i j _ .5

2isplays -- 5

T'.C-SFACE bISFLAYS (SCATTER AI:L CLUTE R

mi4slead i rg.

5. 1.1 TI.E LISPLAY IThFCIXATiC,; (DI) FILE -

The display file set up for twC-space displays allows the

CLFARS applications programs to efficiently create a new display,

view an old display, or change the scale of two-space plots. T,e

DI file header (see Figure 5-1) contains the following information.

o The display ccde (element 1).

o A code (element 2) for the type of coordinate projection.

used: LI, L2, SI, $2 versions of ASEG, CRCV, EIGV, FZiiF;

or NLM.

o The treename, nodename pair (elements 3 through 14) that

makes up the (current) data set for which the two-space

plot was made.

L o The dimension of the data set (elenent 15) and the

number of lowest nodes in that data set (element 16).

o The number of boundaries is in element 17. There is a

maximum of 2 boundaries on any one or two-space plot.

o Elements IS and 19 enable OLPARS programs to access the

boundary points (and 2-space convex point) of the first

96

'9d

------- ------ ------

..- /

- . :.er bc un.zi .s

o :: f po int s i.'n 1st t oun dar y

First bouinary po iner P> y: , --s.
the c. unharn.

fi!c

ic.)f ,oints in 2nd bcunder',

0, -rn4 boundary -oItr

_ -25 y in) y :v7.-ax)

2;.3--2,7 Cur r ,,nt x (:. r), x (-,-,x)
2E - 2' y(!n.ir.) , y(:nx)

. n d prcj . vect. num ber (pr.) - I

32-39 LGIC '..AXE

Logic Nod e Number

41 Total Number of Vectors

2 'I-uer of -ins (I)I

43 Type of Scaling
(1-space) (2-space)

0 = probability rectangular
1 = counts square

44 Zoom Flag (C = not zoomed)
(1 = zoomed

45 Intensity Flag (C : no class has
been intensified)

(for one-space micro cnly) (1 = a class has
-- - - - - - -- -- - - - - - -. been intensificd

Figure 5-1 The Display Information Filc Ecder
for 2ne-Space and Thco-Space lisplays

f9r

Li3plays --

C-CLF C L E2F L E~ (.C .T T F C L U o 'vPE

cL.;, Car; in ti.e L V file. (The ccnve C r. L fcur:c

n te entry irmediately fc l o .inI, th last poirt cf

each bourdary. The rumber of poin tZ irn a bcurndary

(elenents 1I',1) does not incluce tie convex pcint).

c Elemen.s 2C and 21 Provide the same infcrmatior fcr the

second tourdary, as do elements 1E and 19 for the first

boundary.

o Elements 22 through 25 contain the rninrimum and maximum

x, y values for the projected vectors.

o Elements 26 through 29 contain the minimum and maximum

values that are used tc create the two-space plot.

These values are initially the same as those in elements

22 through 25. Then a scale change is made ty the user,

using the command SCALZIK (scale zoom), the screen

coordinates that specify the new scale are transformed

into the coordinate system of the projection vectors,

and are stored as the current minimum and maximum

values. Vectors that lie outside of this new region are

not displayed on the screen.

o Elements q0 and 31 contain pointers to the projection

vectors (in the PROJECT-ON VECTCE file) used.

I I I I II I I I I I' " " ii , 3

Llementcs :2 *nrcLa C are used ut t:. .cO2O one-space

(LI) arc t c-szace (L' prcjfciion rcutines. ey zor C

".e r.&n:t of the lo ic and tne ncdc n.r.:Ler :or .. 'c: t:.e

. rzjecticr. ' "- ce.

Lo 1er:en 41 ccntains the tctal nurr.Ler of vec',cr- irn the

cata set. t is used in determinir .,hetl.er to produce

a scatter cr cluster plot. if it is larger than 5CC, a

cluster plot is produced. if it is SCG or less, Z

scatter plot is produced. This default value of 5CC

may be changed by the user (see the command CEEFAU.LT).

o Elements 42 and 45 are for one-space displays only and

are ignored in the two-space case.

o Element 43 determines the type of scaling to be used for

a two-space display, either square cr rectan.gular.

Square scaling is the default and may be changed by the

the user (see the command CSCALE).

o Element 44 is the zoom flag for one or two space

displays and when set, indicates zooming is in effect

(i.e., the display scale has been modified to cet a

"closer" lock at classes found on the display).

£ 9

. " " I a

C-2 F-CE S fLA (SCA T F, A1.L CL U ZEF)

For each clzss (lc,.est noce in the cata set) there is a

logical entry in the EI file (see Figure 5-2).

.2J vectors from a class will te stored in the LIV file in

secuence. Therefore, elements 5 and 6 of the logical entry for

th:at class will give access to all of the projected vectors.

(Element C actually points to the projection of the mean vector of

the class.) Element 7 indicates whether or not the vectors from the

class should be displayed on the screen. This element is initially

"on" ana can te reset by using the command SELECT. The display

flag symbol (element 3) appears next to the class symbol of

"classes-cisplayed-and-currently selected" list of the one or twc

space display. (Currently, this symbol is only important with

displa~s using the Fisher discriminant plane. All projection

subroutines (e.g. rSpPRCJ, LCPRCJ) initially make this symbol a

'blank.')

100

I

A

3 number of vectors in the css

Pointer to rojectcd vectors :n Di

7 Display flig (1 :eans display class
S.'eans aor.'L sh;cw it)

:isplay Flag Symbol

Figure 5-2 The DI File Logica. Entry for Two-Space Displays

I,1i

• l~l r

Lispiys --
T'..C-S AC-7 F2?L-.Y (LCA 7ER ALF L CL!MT Li)

. T1.2 TLI :'FLY LUE (V) F:LE -

The general structure of the 'V file 'cr a data set with ' '

lc.est nodes is pictured in Figure 5-3.

The L file header (see Figure 5- is Just four elements

long. The first two elements ccntazn information for the purpose

cf cross checking the EV file with the CI file. The third element

indicates whether cr not screen coordinates have been computed.

This flag will be used in situations where vectors must be

redisplayed but the screen coordinates have already beer, computed

(e.g., the commands ELECT, DISFLAY). Element 4 points to the

next available entry at the end of the file.

The projected vectors from a data class are stored together in

a block in the LV file (Figure 5-3). The first vector in each

bicck is always the projection of the mean vector of the class.

For structure analysis displays, the mean vector of a class 4s

stored in the TI file and is projected and inserted into Che LV

file before the rest of the vectors from that class are projected

and stored. For logic design displays, the projected mean vector

may have to be computed after the rest of the vectors from a class

(or part of a class) are projected.

In either situation, the mean vectors will not be initially

displayed on the terminal screen. If users wish to see the

projected mean vectors (for the classes that are being displayed)

superimposed on the screen, they should invoke the command FRCJhI1.

102

T

C~ 1

- - -- - - -- - - -- - -- - - -- - --

.i ": - d ---"

Cs 1

?rcjec'- d

Vectors fro:.:

C1 ass 2

Projected

'>ectors frc. :-:

Class k

Loundary points

from boundary 1
,ptional -- - - - - - - - - - - -

Eoundary points

from boundary 2

Figure 5-3 The CV File for Cne- and To-Cpac3 Displays

10

1 ispi~y co(

2 CL?22 ptioniuce

nor~t cc,Irpuzec
scre-an Coordinat-e Fla-

1 screcn ccorr-4,.-s
I cc,:puted

4 lext' Available Entry

Eiue5-14 The E;V File Header for Crie-O'pace
and Two-Spac2 Displays

1UD4

24

:isp2:'ys -- -
', ,.C- FAC E I LAY (SCATT. ALr OL LI.r C." Z ,.

CJMI 'i. display the mean vectors on the xaxi tir.c cisp2 ay ' ith

l rectangles arourd the apprcriate class symtcl

A LV file logical entry (see Figure 5-5) ccntains a:I the

necessary information 3bout a projected vector or a boundary point.

Ihe 1D of a mean vector is a negative one (-1) and the i of a

boundary point is zero (C). Screen coordinates are discussed in

Section 5.1.4.

,hen storing bouncary information, the actual boundary points

will be stored first (there can be at most six such points),

followed ty the point on the "convex side" of the boundary. The x

and y coordinates of the boundary points will be computed by

DRAtaZDY as they are entered by the user.

5.1I.3 TLE PRCJECTICIN VECTOR (PV) FILE -

There is one other file that will be necessary for the

efficient display of two space plots. This is the Frojection

Vector (PV) File. It contains the n-dimensional vectors on which

the data set is projected. Each entry is of length LDIIN Fnd

contains a projection vector. In addition, eigenvectors (and

eigenvalues) that have not been chosen by the user, are saved in

this file. If the user wishes to reproject on a different set of

eigenvectors, for example, they are immediately available for use.

The structure of the PV file is pictured in Figure 5-6. L'otice

that the vectors actually used in the projection are pointed to in

105

FN .. C - 7:7!

1e fc tor 1.£ 0 if bcun 'zrv zc--nt

scee --c rcte

4 y COOrz't 4-ate

5 y screen~ cocrdinate

Figure 5-5 Tno IOV Filie Logical Entry
"or Two-Space Displa~ys

1O6

.. -iT -, ., 1. ... , -C ..

-! u.r.nent

'"] .i-' . U d

14

15 :rumber of : Csurecntz used
15' I " c to t r

1..ber of projction v.ctjr

17 Pointer to 1st projection vector

12 Pointer to 2nd projecticn vector

-i
E:try 1 'easureiient v'ector

Entry 2 FirSt Vector

Entry Scond Vector

Entry K+I th vector

Enz.ry K+2 Ei*envalues (Only for .EIGV or
4.:DV commannds)

Figure 5-6 The PV file for One and To-Space Displays

1C7

i

Li-plays -- 5

T..C-ZFACE CISFL'IS (CA'7ERAI.L CLULTEF."

elements 17 rd lE cf this file. These vectors are also referenceo

el1ements 3C ard 31 cf the LI file heacer. For coordinate

projections, the FV file contains an 4centity m:atrix. For the ASLC

and Ff IF commands this file contains only one or two vectors.

FCRTRAI. OLPARS allows users to delete specific measurments in

mcst structure analysis or logic design projections. Any

measurements that are deleted from such a projection are kxept track

of in the LV file as follows. The number of measurements used in

the computation is saved in element 15. The first entry of the FV

file contains a measurement vector (of length NOrK) which is a

vector of zeroes and ones. . one occurs if the measurement is used

in the computation; otherwise, a zero is placed in that

coordinate. For the eigenvalue options, the number of eigenvalues

equals the number of measurements used.

The projection vectors stored in the PV file also have length

NDIII. This results from placing zeroes in the deleted coordinate

positions of the projection vectors.

108

- ill" -

I LisSpl&ys --

T',;C-LFACL _7ISFLAYS (2CA ?I A1.E CLL_ I-,

5. I. creen Coordinztes -

TI.e set cf x anc y "ccorcinates", founu in the :\ file log ica3

entry (see FigLre 5-5) for each vector, is the projecticn point of

the vector onto the plane cf tlhe projection vectors. This set cf

ccordinates remains fixed as lcng as the projection vectcrs remain

fixed. The set cf x ana y "screen coordinates" is the system

aependent screen position of the point. The "screen coordinates"

depend on which calculated two space option is used, cluster or

scatter.

A hypothetical screen for CLPAS with a rectangular two-space

display area is pictured in Figure 5-7. it is assumed that:

a. The coordinates start at (O,C) in the lower left

corner of the screen.

b. Each character is represented in a rectangle Wc

units by hic units and is displayed by specifying

coordinates for its lower left corner.

109

• ,

('..s ,>z.)

(- d(-I')

7 T

S S

(b)Wd (7 b)

(0j, C) 'eis

';s = num be r of Jdis pl1z:y u n its i n screen width,
Is = number of display units in screen height

'.d = number c A d i splay un it s in .ds pla y "id t ' = C-a
l'd = n u:,be r of display units i n display height = d:-b
'4c = rnumbecr of display units i4n character width,
Hc = number of display units in character heig7ht-

(a,b) , (c,b) , (c,d) , and (c,d) are the screen
-coordinates of thae display rectangl!e.

Figure 5-7 A hypothetical screen

1 I
I I

...I'. I,-- -l ,i , _ : <. , .

Lisl ay --
" C-'FAC E 2£LA, (20 i - . cLLL:-:

For a scatter plc.t, tL-e screen cccra-r.at s (,z, Ys) cf

vecccr are Eiven by

X - Xin

+(.d - + 4 r. <= x < := x

Xs : A x

C X < Xr.in or X > Xr;,a.x

Y - Ymin

- (Hd- 2Ec) + b + ic Ymin <= Y <: Y-ax
Ys Ymax - Yr.in

Y < Ynin or Y > Yr-ax

where x,y are the pi :jected values of the vectcr and

MAX = maximum (Xrax - Xmin, Ymax - Ymin)

when 'square' scaling is used and

MAX = (Xmax - Xmin) for Xs
I1AX Ymax - Ymin) for Ys

when 'rectangular' scaling is used.

The "current values" of Xmin, Xmax, Ym:in, Yrrax (found in the

EI file header) are used and Xs, Ys are interpreted as integer

values fcr display. The calculation of (Xs, Ys) is set up so a

display point never falls on the display border.

111

" - '___ __ _-___ __ __ __ __ ___ __ __ __ __ __,__ _ ,__ _.__ _ __ __

i 7,..C-SEACE L-SrLAYS~ (JCA?7EFA. CLL2:Eh)

Fcr cluster plots, a -rid r:ust te superimoeo or. mC CL A.F

cIz3play wir.Co (seE Figure }-E) ' e no., interpret tLe screen

cccrcinates (Xs , Ys) cf a vectcr tc tc .e e ir ;.h cc 1 "

Projected vector (x,y) lies.

'Is ad Ys are Ziven ty the fcr!uias:

'A- Xmin

(r) +1 Xrin <- X < Xrmax

As S X : Xmax

C X < Xmin or X > Xr.ax

Ymax- Y

-....... (V) + Ymin < Y <= Ymnax
.AX

Ys I Y = Ynin

0 Y < Ymin cr Y > Ymax

Again, Xs, Ys are interpreted as integer values. L'ote, for

both cluster and scatter displays, if Xs = 0 or Ys = 0, it means

that the point (Xs, Ys) fell outside of the region to be displayed.

Such points are not displayed.

112

1 - - - - - - - - - -

iur 5" i p a e t ni i h C u te

Ltd

* I

I I I I1I

I

I I .I I,., . . : ,

. :LAY - (2CA.7E- ALL CLLST ')

zc(uciticnal ccr.sidcE'atcins ccncernir.J screen ccorcinates

.re as follows:

C The constants ',,s, is, ' d, i , ';c, i.c, a, b, : ,

S, k, and X are all system dependent and are

deterir.nec by experimentaticn :.i the

particular terminal. In order to make rucl of

the code that utilizes these constants system

incependent, we aid the following:

cc The constants reside in an CLPAES file

that can be easily updated by "s,.steis"

personnel.

00 Cne of the functions that the HELCLP

command provides is to request the

terminal type from the user. HELCLP

will then place the correct constants

into tne CM1 file (see Section 4.1) for

use by the display programs. This way

the same CLPARS programs can put up

displays on different size terminal

screens.

Appendix E shows an example file containing screen ccordinates

for a Tektronix 4G51 terminal.

114

• 0 'I ' I | I II I I II i 111-: : .h _:.:t I .,kJ ; I li

Cisplays -- -

T'C- ?AC E::FLAYL (2C.:K.,, AL, CLLZ

5. 1.5 caling In T;wo- pace Lisp:Lys -

The 'type of scalinl f"g and 'zoom' flg (elements L- anc "

cf tLe t~c-space disp1ay ir.fcrrmatior. filc neader) ccntrcl t.e

scaing founc or. clhe Lc-s .ace display.

ritially, all L o-space projections a:vc- 'scuare' scalir..

This r-eans that the volue of the measurement units on totL the x

and y axes are equal. ','hen scale "zocring" (obtaining a close-up

view of a subsection cf the original display) or a scale change

¢ccurs, the scaling becomes 'rectangular', "hat is, the value Cf

the measurement units on the x and y axes are nc longer equal.

5.1.C Original And Current ikin-Max Coordinates -

The 'original' minimum arcd maximum coordinates are obtainec

during initial data projection computations (Global Scale). Since

the initial two-space scaling is 'square', the 'current'

coordinates are obtained by using the maximum range of the

'original' min-max coordinates. Thus, the current min-r:ax

coordinates are readjusted original coordinates. if the CSCALE

(change scale) command is used immediately after a two-space data

projection, the display would use 'rectangular' scaling with the

current min-max coordinates equal to the original min-max

coordinates. If the SCALZM (scale zoom) command is used to obtain

a display subsection, the current min-max coordinates reflect the

exact subsection requested by the user (zoom scale). If the CSCALE

command is used after SCALZN, the maximum range of the current

115

5£ispla~s -- 5

ThC-SFACE ISFLAS (SCATTE . hi CL L)STE

n:in-r-.x ccordinaztes is used to r-aajust those cocrcinates sc tliat

tiie type of scaling is 'square'. 'here returninS the display tack

to its global scale (SCALRET command) , the 'scuare' scaling range

is used again for the current min-max coorcinates. See Figure -CA

fcr a table summary of the original ard current min-r.ax coorcinate

staCes.

5.2 CNE-SFAC; CISFLAYS (,kMICRO AI:[NACRC)

CLPARS can produce two types of one space displays. They are

referred to as "micro" and "macro" displays. The one-space micro

display is a view of selected data class histograms presented in

symbolic format. Using the INTENSIFY command, selected class

histograms can appear as bar graphs. The one-space macro display

is a viev: of selected data classes in a "stack histogram" fcrmat.

Examples cf these types of displays appear in the CLPARS VI User's

anual.

The display files for one-space displays are very similar to

those for two space displays. The EI file header, shown in Figure

5-1, is identical to the two space case. Information like Ymin,

Ymax, number of point- in a boundary, that are only used in two

space displays, are ignored. Element 42 contains the number of

bins used in the display; element 43 is used to determine the

vertical scale for micro plots; element 45 shows whether or not

any of the classes for a micro-view display have been "intensified"

(micro-plots only).

116

.... ... r -

- - -- - - -- - -~-- -- - -- - -- - - --

urS --.. ,,-

o~~aI. £c~~i : -.4n -, . ax _. ;.• s ' C.-' '. _

co r ina tes o r J.iin als.. '-a L,.-u e s

scpairi

Z.o: c aIc ir.ia I saz t .Ye is Ircct n S u1ar ',

square r ur

o ri- na z r-m x -m in -max .in --,. Z;,x

coordinates data Values a vazIVUes zi

curren; mi n-::ax readjustede zo ed
zoo , et values 1 t, va!,.es ,

r -radjuste- t .a i.um coor inate range use.

:i ure 5 8 r Ori ' ina l and Current -in-'Iax Coorcjinate Sat-s

117

Lisplays --
rI. E-,zACE L s L Y (L...CF A; 1 A C (

The ET file lCriC . entry one space p:.plays Zs shown r.

Fiz ure 5-9. The intensity f! ag is used to determinre wi.ltDer

iistcgrams should be crawr on one soace ri.crc displays. icr each

class in a data set or logic node, ti:ere .:ili be a lotic. entry :n

th e ET f ile. The hi stog-ram informr-tior. 'or each- class is sto-red in

the scratcL 1 (SI) file and can be accessec via tihe bin count

pointer of the 1-space lcgical entry.

The LV file for one space displcys has the sare header as for

twc space displays (see Figure 5-4), and a logical entr , one for

each projected vector cr boundary point, as pictured in Figure

5-iC. In order to define the "screen coordinate" of a vector in a

one space display, let 1.E be the number of bins for the display.

Then, I.- is giver by t1he equation

total # of vectors
U = ain(---------------------------- - - - - - --- E),

(of classes)(one-space bin factor)

where MB is the maximum number of bins allowed on a one space

display. The one space bin factor has the default value of 5, as

In .CCS, but can be changed by the user executing the command

CLEFAULT (this bin factor is stored in the CM file).

116

-5~i ' -- :

D L

3 u o f vectors in ciass

Ptr. to prcjccted vectors in 'V

,DIpay flag (means cisly class

z; eans don't s .-c 1t/

Display Fl.ag Symtol

Intensify flag (1 ii:eans intensify
o mcans don't do it)

1] Ptr. to 'irn counts in SI

Figure 5-9 The D! File Logical Entry
for One-Space Displa ys

: I.I:1

'7ecta bD o 0 ia a bna ry pocn t
-1 if mtean vector

x coordinate

x screen coordinate

Figure 5-10 The DV Filie Logical Entry
f.or urne-Space Displays

120

:is !ays -- "

Xzcreer. 4s defined by the equation

X rr in

(- + 1 if Xr:.ir < X < -.ax
Xrrax - Xrrin

Xscreer. I.E f X = Xmax,

G if X < Xmin or X > Xruax

where the current values of Xmin and Xrmax are used, and Xscreen is

interpreted as an integer. Xscreen is the tin number in which the

projected vector lies.

The PV file for one space is the same as for two space (see

Figure 5-6), except that element 18 is ignored.

One space displays use one additional file; the SI (Scratch

1) file. For each class in the data set or logic node, S1 will

contain the number of vectors (from that class) in each bin.

Storing this additional information will require less ccmputaticns

in options like REEISFLAY and SELECT.

The $I file header (see Figure 5-11) contains information that

enables programs to decide whether or not the SI file contains ,the

correct data. The SI header also contains the maximum bin count

(over all classes) which is used in determining the length of the

bars in the one space macro display. The length of a logical entry

in SI will be the maximum number of bins allowed. There is cne

121

L..sp..ays -- 5

CLE-SFACE JI-LAY (IJ.CFC, A.D .k,.Ct' C) l

icgical entry fcr each class and this entry is pointEc to y

elcment 9 cf the LI file entry for that class. Figure 5-12 sho s

,he fcrrat of the $'I logical entry for one-space oisplays.

5.2.1 Screen Farameters For Cne Zpace Eisplays - 11

The fellowing set of system dependent screen para.neters, zhat

will be accessible to CLPARS in the way described in Lecticr

. are necessary for one-space displays (see Figure 5-13).

(e,f) - The screen coordinazes of the display line of

(g,f) the first class displayed. (Classes are

displayed from the bottom, upwards).

Es - The distance between successive display lines.

NC - The number of classes that can be displayed on

the screen at one time in a macro display. The

coordinates of the endpoints of the last

display line are the (e, f + (NC - 1)Ds) and

(g, f + (NC - 1)Ds).

The heights of the bars in the one space macro display is

computed as follows. The bar representing the maximum bin count is

based on the value Es-6. All of the other bars are then scaled

according to this height. See the subprogram '.ACRCF for further

information.

122

- - - --- - - -- - - --- - - -

- - --- --- - - - - - - - - - -

4- o~t~r f i be

(oh. o f V c t c rs i n
fuI'lesz bin)

Fi,, ure 5-1 1 The S1 File !leader for Cne-Soace rDiszl!,vs

123

I2

- - - - - - - - - - - - - - - - - -- - -

1 ::J:.lLer of vectors in bir,

.j:iber of cors i n

e ruer v of vectors in b. *i "

.13+1 Elank

ax 10o a b in S Bl ark

• f probabilities are used instead of counts in a
one-space micro display, these probabilities are
computed by the program M'COP but are not stored
in $I.

Figure 5-12 The SI File Logical Entry
for One-Space Displays

124

'7"-t

.I- . .. I'

I I

Ds
I

Figure 5-13 Cne-Space Display parFeters

125

Zisplays --

-FLY FILES USE USE ;EAsLNE E'T LAiC CCLU .A.LLS

The Lisplay information () file ana the Lisplay Value (\"

file, wlere used 'vith !-Ieasurement Lvaiuaticn Commards, have fcr.-ats

as described belcw. The general scheme is similar to aisplay

handling for other CLPARS functional applications ir: that the EV

file contains the basic, raw data computed by the rzjcr analytic

function (Eiscriminant Neasure or Frobability of Confusion); the

D! file contains control information and the for -,zted or

ranipulated subset of the raw data, organized for c-isplay to the

user, as determined by the associated subsidiary comnands.

In the case of PRCBCCNF, an extra file, $I (Scratch), is

used (temporarily) to support computation of values which are

stored in the EV file.

Formats for these files are given in the following figures:

Figure 5-14 Rank Order EI Header
Figure 5-15 Rank Order EI Entry
Figure 5-16 Rank Order DV File
Figure 5-17 Rank Order Si Header (PROCCCIIF Only)
Figure 5-IC Rank Order S1 Entries (PRCECCF Cnly)
Figure 5-19 Rank Crder SI Example (PRCECCTF Only)

12

126

1E: , " ' ,S -

n:,ber of :Cf5re:2en'.ts

as - ::rm r L S ses

raink octio n r.;rber

- 1 1. ran'. opt icn cara etcrs (ee T-bIe Zelow)

sort orv. r flla $-:ceren;s~~~~~ -= r lZescen(:inz

71 =ru C 4rder C list of class

isplay _i,aracters

asteriskz fI7/index to best cls s for
- - - - -- - - - - - - - - - - - - - - - - -- - - - - - - --- '- i as5

_ ir.!ines to best class pair no. 1

asterisk flag/index to best class mess
- - - - -- - -- - - - -- - --- -- - - - - - -- - -- ---- no .

+2 Z.' L -I irdices to best class pair X. .!- L

Type of Rankinz C7tion 'io. Cption Parameters
(ele. 17) (elenents iu and 19)

overall --- --

MIes. 3y class 2 class sy.mbol
seas. by class pr. 3 ist class symbol 2nd class sybol
class by ineas. 4 -eas. number --

class pr. by meas. m seas. number --

* he asterisk flag is te algebraic sign; (+) inicatcs not set,
aisterisk off; (-) indicates set, asterisk on. Indices to best

class pair are packed (into one real element) by toe sche:-e
130*firstclass incex + second class ind ex. (Oacking only ,iorks
for class indices less than 3 deci:mal digits long.)

Figure 5-14 "ank Crder I 1ieader

127

Ii
I!

DLS~L.RY :-zz - 4:-e-d

values znu

- va!1e in.c ices Zntry I

- index(indices)

nn xn r n Ch ...

n entry I -e or.y entry) The index ele.ent is a function of
he ra n o tic n nu:ter (it is, a :easureerr.ent n.c . t ccptlc .

e r = I , 2, or 3; a class index if opzior, n uber
or a ss pair ind ces as in tIie Ieadr if op po n

..u.-: cr of ele:,E: nts in logical entry (LENE. C AIC LC L! -I)/2,
wbiere X'CLAS represents tche number of cl-ssas in t:e data set.

Figure 5-15 Rank Order DI Entry

12

_ L .

- ----------- 7-,-,7:,(I - -- '- --, -, - -- -

k~~:I, - Is ix, ;i:

-r ----
I ~ X I .u '

(nclas (ncle-i a /27 "' s! x n ti::i)

I Entry S+!

D n as) x(1 x x(n i..
X I ! . . .:

Lng t, of headcr (:IE) = 2
L ngth of Lc ica1 E try (L ' , -n)

Drd2r c f cLassc is e S sae as t",
ordered I ist -f class sisplay charzcters
itr the D- file header.

A" - =:cosurenert discr. for class pair i,j on rocas. x("--)
"" - :easurezent discrimination for class i on r.eas. x(!:)
"C" - ::easuremnnt discrim.ination for i-,easurement :,(k)

Figure 5-1-" Rank Crder -V File

12S

- rits

o ..' - a asu r e: erts .i.n

n3. CZ11: for cl 1s

' I) o of 'istcsram cells ireas 1

" q~tl.,) offset ptr. for c.ell_ cn- . ,r' e s. ,:

3 C'. (I 1 cell wi th ies I

,'1:() .:in . v aluLe M.-e . I

10: X() : :x . v alu e c-e&s .

13c (2

15 ::AX(2)

,.I N (i2')

..(:D A)

CON(DI]'1 =) CCD:-

T \ : :.1)

5 nd i + :AC (:;DIM)

Length of ileader (5+-*E) i 5(5 ndim)*nclas

Figure 5-17 Rank Order S1 1i!adcr

120

Displys --

DSFLAY FILES USE"' _:. :'EAS RE>'-. .iT EV\ L . :I c..:,DS

e:; ent Contents

CP(j) icount for cell I class i, :"eCs. j

CP(j)+I count fD . cell 2 class .i, 2 eas. j

CP(j)+2 count for cell 2 class i, ::eas. j

I--

4)4

OP(j+I) :count for cell 2 class i, ieas. j+1

OP(j+)+ --------------------------------------
C(j+)-I ':count for cell ':C(j+I) class i, meas. j+1

--

Order of entries is:

i class 1 meas. 1

class 1 meas. 2

class 1 meas. ndirm
class 2 meas. 1
class 2 meas. 2

class noclas meas. ndimn

Length of Entry (LENE) 1

Figure 5-18 Rank Order Entry

131

... .. s- -. ,,, m

Displays --

D I PLAY FIL S S_ Z., :EA'S AE:,!E:T EVALuPIC. C C: :

_Ell-.TR HEs

Display coe(=3) 1) cell 1 :neas. 1 --
ndim(=5) 2) cell 2, .eas.
nclas(=4) 3) cell 3 meas. 1
total cells(:15) 4) cell 1, mes. 2

5) cell 2, mea..,. 2
, IC(1):3 S) cell 3, !-eas. 2
oPI)I 1 7) cell 4, meas. 2

-) cell 1, meas. 3 > class 1
NC(2)=4 9) cell 2, meas.
OP(2)=4 . 10) cell 1, meas. 4

11) cell 2, :neas. 4
N (3)=2 12) cell 3, meas. 4
OP(3)=3 13) cell 1, meas. 5
- - - 14) cell 2, meas. 5
NC(4)=3 15) cell 3, meas. 5 --
OP(4)=I0 ..

:!C (5)=3

OP(5)=13

Figure 5-19 Example of Rank-order SI file
offsets and pointers

132

Displays -- 5

CC1UFUSIC1. MATRICES

5.4 CCNFU'SICIJ MATRICES

There are two types of confusion matrices that CLPARS can

produce; between-group and within-group. The between-group

confusion matrix (see Figure 5-20) is generated when designing

logic using a one-space or two-space group logic command,

partitioning the resultant data projection, and finally using

CREATLOG to create the group-logic. Since it might be desirable to

redisplay the one or two-space projection and the boundaries upon

which the logic might have been based, this type of confusion

matrix is not stored in the display files.

The within-group confusion matrix (see Figure 5-21) is

produced as a result of the design or application of a complete

within-group logic (closed decision boundary, Fisher, NMV), a logic

evaluation on the design set, or a logic evaluation on a test set.

The information to create this confusion matrix is stored in the LI

file. The DI file structure for the within-group confusion matrix

is described next.

133

Displays -

CCFUSIi YATR:,,. (EThN. GROUP LOGIC) DATE: 22-JA: J-&2 12 2 : 2!

REGION LOGC DISPLAY SY:SBCLS OF LOGIC :L.,E- grains
NODE ASSOCIATED CLASSES

CONVEX (1) 4
COVEX (2E) 3 scor
-CESS 2 aC

L 0 G I C :1 0 D E S SUMS AND PERCENTAGES
CLASS (PARENT) (CHILDREN) (CORRECT) (ERFOR)
NAi':ES 1 4 3 2 COUNT PRCNT COUNT PRC ', T

soy 42 0 42 0 42 100.0 0 0.0
corn 4 2 0 42 0 42 100.0 0 0.0
oats 45 0 45 0 43 100.0 0 0.0

weat 42 41 1 0 41 97.6 1 2.4

Cloy 43 0 0 43 43 100.0 0 0.0
alfa 37 0 0 37 37 100.0 0 0.0

rye 42 0 42 0 42 100.0 0 0.0

TOTAL 293 41 172 30 292 99.7 1 0.3
CORRECT 41 171 80
(? C .) 100.0 99.4 100.0
ERRORS 0 1 0
(?RCNT) 0.0 0.6 0.0

Figure 5-20 Between-Group Confusion Matrix
(not stored in a file)

134

.. .'.. . ..4 " ' ' ' ,r : - ,--...

Displays --

PARTIAL JEAREST EA' VECTOR EVALUA T7ON FOR LOGIC :13DE I

,T H EUCLIDEAn DISTA:CE CPTION
OIC N'ArE - grainlog

DESIGj DATA SET - grains (***)
DiME:,S O:ALITY - 12

ASSIGED CLASSES

soy corn oats weat Cloy alfa rye

soy 19 0 0 0 0 0 0 0
corn 1 17 0 0 0 0 0 0
oats C C 20 0 0 0 0 0
we at 0 C 0 18 0 0 C 0
Cloy 0 0 0 0 14 5 0 0
alfa U0 0 15 0 0
rye C 0 1 0 0 0 17 0

TRUE
CLASS soy corn oats weat Cloy alfa rye

TCTL 19 18 20 18 19 17 1
CCP.R 19 17 20 18 14 16 17
PRCT 100.0 94.4 100.0 100.0 73.7 94. 1 94.4
ERCR 0 1 0 0 5 1 1
PRCT 0.0 5.6 0.0 0.0 26.3 5.9 5.5
REJT 0 0 0 0 0 0 0
PRCT 0.0 0.0 C.0 0.0 0.0 0.0 0.0

TOTAL U*'BER OF VECTORS = 129
OVERALL CORRECT 121 FOR 93.80 PRCT
OVERALL ERROR 3 FOR 6.20 PRCT
OVERALL REJECT 0 FOR O.CO PRCT

Figure 5-21 dithin-Group Confusion 'Iatrix

135

Displays -- 5
CCFUSICIL MATRICES

The DI file header (see Figure 5-22) contains information

summarizing the logic evaluation, as well as the names of the

assigned classes, i.e., those classes that reside at the lowest

logic nodes. The constant, Max, denotes the largest number of data

classes that a logic tree may have, which is assumed to be 5C.

For each true class, i.e., the data class being evaluated,

there is an entry in the DI file. It contains the class name and

the information that appears under the name in the confusion matrix

display. See Figure 5-23.

The DV file is not used to create the confusion matrix display

at the screen. The EV file may be used at a later date to store

certain logic design error information that can be sent to the

printer under the various line printer options. However, this is

presently accomplished by creating a temporary sequential file to

store such information.

136

L°I.

Displays -- 5
CC:.'F "S .,,.,,,, ... !.,IT 1'ES

El err ent
D Display Code (=4)

OLPARS option number

3
thru DESI3:; DATA SET : A>E
14

15 :Iu~nber of true classes
16 : D IM
17 Number of vectors

L~ IN12. L N

0 A
thru C H

IIE

25 C

26 Logic node number --

(0 means file was created
thru an overall evaluation)

27 Total number correct
28 Total number errors
29 Total number reject
30 Percent correct
31 Percent errors
32 Percent reject
33 1 Number of assigned classes
34 Logic type (-1 for overall

evaluation)
I---

35-38 Name of assigned class 1
39-42 Name of assigned class 2

Name of last assigned class

I---
Blank

34+4 *Max

Figure 5-22 The DI File Header for
Confusion Matrix Display

137

1 True

Class

1a, r, e

Number of Vectors

5 *Number Correct

7 Number Errors

8 1 'lumber Reject

9 Percent Correct

10 Percent Error

11 Percent Reject
--- I

12) Number in first assigned class

* Number in second assigned class

11 + number
of assigned 1Number in last assigned class
classes-- - - - - - - - - - - - - - - - -

11 + ,ax

Figure 5-23 The DI Logical Entry for
Confusion Matrix Displays

i3s

I
I

SECTICN 6

TERMINAL ALD TEXT FILE INPUT/OUTPUT

6.0 INTRCDUCTION

The following sections describe the terminal character I/C

package, the terminal graphics I/O package, and the text file I/C

package. The terminal character I/O and the text file I/C packages

were based on similar packages that can be found in the UNIX I/0

library. The graphics I/C package resembles the FCRTRAN PLTNAP

routines.

6.1 CLPARS TERMINAL CEARACTER INPUT/OUTPUT

The CLPARS programs use terminal input and output character

handling routines. Cue to the nature of the task required of these

routines, they should be considered system dependent.

The terminal input routine (TRMCET) obtains its information as

a character string. It will perform a translation of these

characters to some internal representation, specified by a format

control string. The reason for having a terminal input routine

translate the user input characters and not a FORTRAN I/C package,

is that some FCRTRAN I/O packages abort a program when the input

cannot be interpreted properly. This is totally unacceptable for

the CLPARS system. By having its own terminal input routine, an

139

... , ? L* , , ,

Terminal and TexL File input/Cutput --

CLFA.\S TER.It;AL CHARACTER 1NPUT/CUTFUT

CLFARS program can control what happens when it receives invalid

input.

To be consistent and not rely on what a FCRTRAI I/C package

can handle, CLPARS programs also use a terminal output routine

(TRMFUT). This routine translates the internal representation of'

data into a character representation, via a format control string.

The following text explains in greater detail what a format

control string may contain, and how the terminal I/C routines will

function. Most of the format conversion characters coincide with

FORTRAN's conversion characters. The specific actions taken during

a conversion process, however, may be slightly different.

To be able to format terminal output, it is necessary to have

complete and easy control over the terminal writing mechanism

(i.e., cursor, type ball and carriage, matrix printer head, etc.).

In this section, the writing mechanism will be known as

"cursor".

To control the cursor, a programmer needs to specify when it

should move down a line (line feed), or when it should move to the

right (tabs, spaces) or left (backspaces, return). The following

paragraphs specify a character representation of the cursor

control, that will be used in the terminal I/C format control

strings.

140

. er.mina! End Text File Input/Cutput --
CLFARS TE I.AL CLALACTE.E R;FUT/CUTF'T

C1.1 . pecial Chaiacters ithin A Format Ccntrol String -

The ':' provides for writing tabs, new lines, backspaces, line

feeds, and carriage returns so that they are visible tc a

prcgramrmer. The symbol ':' is known as an "escape character",

i.e., whatever character follows ':' is in some way special.

The previcusly mentioned special characters are represented as

follows.

:N newline character, i.e. carriage return and line feed

:E[n] backspace 'n' character positions

:L line feed character

:R carriage return character

:T tab character (tab stops are placed at eight character
intervals from beginning of line, i.e., 1, 9, 17, 25 ...)

:F form feed character

To obtain the escape character in a string, ':: .ust be used.

(Niote, due to FCRTRAN conventions, the single quote character

cannot be "escaped".)

Other special character meanings:

:P[n] place line cursor to 'n'th character position within the
current (buffer) line.

:X[n] input: skip over the next 'n' characters in the current
(buffer) line

output: transmit 'n' blanks to the current (buffer)
line. Note, if n is missing in either of the
above, 1 is assumed.

141

Termial and Text File Input/Cutput -- 6
CLFARS TERMINAL ChARACTER INFUT/CUTFUT

Icte, if the numeric zrq,.:ment is missing from the :E, :F, cr

:X special characters, a value of I is assumed. Alsc, if the

numeric argument of these special characters is an asterisk (*),

the numeric value for the character is to be founc in the argument

list of the character I/O routine processing the format control

list.

Examples:

(In the following examples, the symbol I[]'
represents the final cursor position.)

- if format = 'Hi, HCW ARE YOU?'

HI, HCW ARE YOU?[]

- if format = 'I AM FINE, THANK YOU.:N'

I AM FINE, THANK YOU.

[]

- if format 'WATCH THIS! A:LB:LC:L:BE:RE'

WATCH THIS! A
B

C
Eli D

- if format 'TEST:TTABBING:TNECHANISM:N'

TEST TABBINGMECHANISM. (Note: ' ' is strictly a

[] place holder for spaces,

i.e., a space character

really should appear

where ' ' does)

- if format 'SPACE:X5EXAMPLE:X3WITH:X3POSITIONING.:P26RE:N'

SPACE EXAMPLE WITH REPOSITIONING.

142

Terminal and Text File Input/Cutput -- 6

CLPARS TER.,IINAL CEARACTER II.FUT/CUTFUT

6.1.2 TRMFUT -

The calling sequence for TRXPUT is:

CALL TR'PUT (format-string, argl, arg2, ...)

TRMFUT is a terminal output subprogram. It formats, converts,

and prints its arguments to a user's terminal, under control of a

format string. The format string will contain three types of

objects: plain characters, which are simply copied to the

terminal; special characters, which are used for cursor control;

and conversion specifications, which are used for converting and

printing arguments which follow the format string.

Each conversion specification found in the format string

begins with the character '$'. Following the '' there may be:

- an optional plus or minus sign which specifies right

or left adjustment of the converted argument in the

indicated field.

- an optional digit string representing a field

repetition factor. If it is not present, it is

assumed to be I.

143

Terminal and Text File Input/Cutput -- 6
CLPARS TERMILIAL CEARACTER INPUT/CUTPUT

- a character which indicates the type of conversion to

be applied.

- an optional digit string specifying a 'MINIMUE' field

width (i.e., the field to be printed may actually be

larger than specified, but it will not be smaller than

specified); if the converted argument has fewer

characters than the field width, it w.ll be padded (on

left or right, depending on the field conversion type

and the field adjustment indicator) with blanks to

make up the field width. If the character '' is

placed in this position, the next argument in the list

(the one that follows the argument to be printed) is

used to obtain the minimum field width.

- an optional period ('.') which serves to separate the

field width from the next digit string.

- an optional digit string (the precision) which

specifies the number of digits to be printed to the

right of the decimal point of a single or double

precision number, or the maximum number of characters

to be printed from a character string. If the

character '*' is placed in this position, the next

argument in the list of arguments is used to obtain

the maximum field width.

144

Terminal and Text File Input/Output -- 6
OLFARS TERMKINAL C11AEACTER Il;PUT/CUTPUT

) = TRMCET('$A2C', 5)

N = 1; S = "abcd efg 12jt"

9) N = TRVGET('ACC$C', S, T, U, V)

I1 = 4; S = "abcd"; T = ' '; U ' V = e

(Note: 'C' conversion specifier suppresses space skipping)

The following example shows how the 'execution time' field width

can be used.

10) N = TRMGET('$A*$A*', S, 3, T, 5)

U = 3; S = "abe"; T = "d ef"

6.1.4 Some Notes On Terminal I/C -

Both TRMGET and TRMPUT are written in assembly language.

TRMGET and TRMPUT are entry points into the routines FILGET and

FILPUT, respectively (see Section 6.3). Essentially, the terminal

I/O routines can be thought of as special cases of FILGET and

FILPUT.

A call to TRMGET is equivalent to:

CALL FILGET (terminal LUN, format-string, argl ...)

A call to TRMPUT is equivalent to:

CALL FILPUT (terminal LUN, format-string, argl ...)

*156

IL

Terminal and Text File input/Output -- 6

CLPARS TER .I!:AL CFARACTER IlFUT/CUTFUT

Note :

Each character is represented by a single element in an

integer array. However, fcr convenience,the characters will ,e

displayed here as contiguous character strings, addressed via the

name of the array. Also, there is an ECS symbol attached to the

end of all the character strings enclosed in double quotes. When

the optional field width portion of the 'A' conversion

specification is missing, the input field is a string of non-space

characters. All initial space characters are skipped over and the

input field is TERNINATED BY A FACE CHARACTER or a EEW LINE. If

the field width is specified, then any initial space characters are

skipped over, and the FIELD WIDIH or a NEW LINE TERMINATES the

input field.

2) N = TRMGE1 ('$2A3'I S, T)

N = 2; S ="abc", t = "d "

3) N = TRMCET('$4/A $A5', 5)

N = 1; S = "efg I"

4) N = TRMGET('$A $A $A', S, T, U)

N = 3; S = "abed"; T = "efg"; U ="12j5"

5) N = TRMGET('$/A3 $A1 $/2A3 $C', S, T)

N = 2; S = "d"; T = '5' (no EOS; represented by single
quotes)

6) U = TRMGET('$/2A $A', S)

U = 1; S = "12j5"

7) N TRMGET(':X2$A :PSA :PE $A', S, T, U)

N 3; S ="cd"; T = "abed"; U : fg"

155

Terminal and Text File Input/Output --

CLPAFS TERINAL CLARACTER NPUT/CUTFUT

The conversion characters and their meanings are as

follows:

I - The argument (1 word long) is converted to a decimal

integer. if an adjustment indicator is not present

in the conversion specification, the resulting output

character string will be right adjusted within its

field.

H - The argument is considered a half integer (1 byte

long) Default field adjustment is 'right'.

L - The argument is considered a long integer (2 words

long) Default field adjustment is 'right'.

0 - The argument (1 word long) is printed out as an

octal number. The resulting output string wil be

right adjusted in its output field, when a

justification indicator is not present.

145

Terminal and Text File Ir.put/Output -- 6
OLPARS TEEMINJAL CEARACTER INPUT/OUTPUT

A - The argument is taken to be a string of characters.

The characters are stored in an integer array, one

character per integer. Characters from the string

are printed until an end of string character (0) is

reached, or until the number of characters,

indicated by the precision, is exhausted. If an

adjustment indicator is not present in the

conversion specification, the resulting output

character string will be left justified in its

output field.

S - The argument is taken to be a character string. The

only difference between the 'S' and 'A' conversion

specifiers is that the characters to be printed are

stored in tne FCRTRAN hollerith data type, instead

of the FCRTRAN integer data. type.

F - The argument is taken to be a single precision

floa4 ing point number and is converted to the

decimal notation of the form [-]mmm.nnnnnnn, where

the length of the string of n's is defined by the

'precision' specification. The default 'precision'

is 7. Default field adjustment is to the right.

146

Terminal and Text File Input/Output -- 6
GLPARS TERNINAL CEAACTER 11FUT/CUTFUT

E - The argument is taken to be a single precision

floating point number and is converted to the

decimal notation of the form [-]rn.nnnnnnnE(+ or -)ee,

where the length of the string of n's is defined by

the 'precision' specification. The default 'precison'

is 7. The default field adjustment is to the right.

D - The argument is taken to be a double precision

floating point number and is converted to the decimal

notation of the form [-]m.nnnnnnnnnnnnnnnnD(+ or -)ee,

where the length of the string of n's is defined by

the 'precision' specification. The default precision

is 16. Default field adjustment is to the right.

If no recognizable character appears aft*er the '$', that

character is printed; thus '$' may be printed by the usage of the

string '$$'.

147

,.

Terminal and Text File Input/Output -- 6
CLPARS TERMINAL CLARACTER INPUT/OUTPUT

The following lines contain some example usages of conversion

specifications and their resultant output (NOTE, ' ' represents a

space (P ') position).

if STR ='abcde' if INT =578 if FLT =352.7C9

$A abcde $1 578 $F 352.7C9

$A abode s-I 578 $-F 352-709

S oS abcde $+1 578 $+F 352.709

$A3.3 =abc $12 =578 ()$F5.2 = 352.71

$S3.3 =abe $-12 578 $F5.2 = 352.71

$+A-'.3 =abc $+13 578 $+F5.2 = 352.71

$S7 =abcde__ $-15 578 $F9.14 352.7090

$-7 abcde_ - -15 578 $-F9.~4 =352.7090

$+A7 __abcde $+15 578 $+F9.~4 =352.7090

()An example of what happens when a numeric field
width exceeds its "minimum" field width.

148

Terminal and Text File Input/lutput --
CLPARS TERMINAL CLSARACTEF ::.PUT/CUTFUT

The following lines show examples cf the executicn time field

width and precision portions of a conversion specificaticn.

if STR z'abcde', I 3, and J = 7, then,

CALL TRPUT (,$A*,, STR, I)

'abode' is printed at the terminal

CALL TEMPUT ('$A.*', STR, I)

'abc' is printed at the terminal

CALL TRMFUT ('$A*.*', STR, J, J)

'abcde ' is printed at the terminal

CALL TRMFUT ('$A5*', STR, J)

'abcde' is printed at the terminal

TRMPUT signals its failure to write to the terminal by an

approriate error message.

6.1.3 TRMGET -

The calling sequence for TRNGET is:

N = TRMGET (format-string, argl, arg2, ...

TRMGET is a terminal input function subprogram (It must be

declared as a FORTRAN integer). It reads characters from the

terminal, interprets them according to a format, and stores the

result in its arguments. The format string usually contains

specifications which are used to direct interpretation of input

sequences.

1/49

Terminal and Text File Input/Output --

OLPAES TEhMI!AL ChiARACTER IN PUT/OUTFUT

A format string may contain:

- The special string characters representing blanks,

tabs, newlines, backspaces, linefeeds, carriage re-

turns, or formfeeds, which are ignored (these will

be known as 'space' characters).

- Ordinary characters (not '$') which are expected to

match the next non-space character of the input

stream.

- Conversion specifications, consisting of the character

'$' an optional assignment suppressing character 'I'

an optional space skipping suppressing character '-'

an optional numerical field repetition factor, a con-

version character, and an optional numerical 'IAXIMU]'

field width specifier (i.e., the field to be read may

actually be smaller than specified, but not larger

than specified.)

Note, the maximum field width specifier may be re-

placed by the character ,'1, which indicates that

the argument following the one currently being pro-

cessed contains the value of the maximum field width.

150

Terminal ana Text File Input/Output --

CLFARS TERmI1;AL CLARACTER IIFUT/CUTFLT

A conversion specification is used to direct the conversion

of the next input field; the result is placed in the varia-

ble pointed to by the corresponding argument, unless

assignment suppresion was indicated by the '/' character.

The assignment suppression character '/' directs TR,:CET tc

skip over the specified type of field in the input stream.

An input field is defined as a string of non-space charac-

ters. However, an exception can occur when using an 'A'

or 'S' conversion specification. See 'A' description.

The following conversiun characters are permissable:

$ indicates that a single '$' character is expected

in the input stream at this point; no assignment

is done.

I indicates that a decimal integer is expected in

the input stream; the corresponding argument

should be of type integer.

H indicates that a decimal integer is expected in

the input stream; the corresponding argument

should be of type half integer (i.e., in EEC

FORTRAN the type is LCCICAL*1 or BYTE).

151

-- II I Il I':, r l i
' { ' '

Terminal and Text File input/Cutput --

OLFARS TERINAL CE:ARACTER I;FUT/CUTPUT

L indicates that a decimal integer is expected in

the input stream; the corresponding argument

should be of type long integer (i.e., in EEC

FCRTRAN the type is IINTEGER*4).

A indicates that a character string is expected in

the input stream; the corresponding argument

should be an integer array large enough to

accept the string and an end-of-string (ECS = 0,

the null character) symbol, which will be added.

If an optional field width is not specified, the

input record is terminated by either a space

character or a newline.

If an optional field width is specified, only

a newline may terminate the input record before

the end of the field is reached. Thus, space

characters may be embedded in the output field

only if a field width is specified.

S indicates that a character string is expected;

this specification is identical to the 'A'

specification except that the corresponding arg-

ument should be a HOLLERITH field (i.e., in EEC

FORTRAN this is the variable LCGICAL*I).

I
152

! I

Terminal and Text Vile Input/Cutput --

CLPARS TEF.I;AL CHAFACTER IfFUT/CUTFUT

E indicates that a floating point number is

F expected in the input stream; the corresponding

argument should be a single precision 'REAL'

variable. The input format for a floating point

number is a string of numbers, possibly contain-

ing a leading minus sign, followed by an optional

exponent field containing an 'E' or 'D', fol-

lowed by a possible signed integer.

C indicates that a floating point number is ex-

pected in the input stream; the corresponding

argument should be a double precision 'REAL'

variable. The input format is identical to that

of the 'E', 'F' format.

C indicates that a single character is expected in

the input stream; the corresponding argument

should be an integer variable. Note, no ECS

symbol is tacked on the end of the character

in the output field.

TRMGET returns, as its value, the number of successfully

matched and assigned input items. This can be used to decide how

many input items were found.

153

Termi.nal and Text File Input/Cutput -- 6
OLFARS TERF.INAL CHIARACTER INPUT/OUTPUT

If a program termination symbol (a null line or carriage

return) is encountered by TRMGET, a -1 is returned.

If the OLPARS universal help symbol (?) is found as the first

non-space character in the input record, a -2 is returned.

The following lines contain usage examples of the above

conversion characters.

Current input string: "579_34_62158" *

1) N = TRMGET ('I $11 $211', J, K, L, M)

N = 4, J = 5797; K = 3; L = 4; M = 6

2) N = TRMGET('$212 $21', J, K, L, M)

N = 4; J = 57; K = 9; L 34; N 62158

3) N = TRMGET('$/I $I', J)

N = 1; J = 34

4) N = TRMGET('$/21$I', J)

N = 1; J = 62158

5) N = TRMGET('$/212 $I', J)

N =1; J = 34

Current input string: "abcd efg_ 12j5"

1) N = TRMGET('$A $A3', S, T)

N = 2; S = "abcd"; T = "efg" (see note on following page)

' ' is strictly a place holder for spaces, i.e., a space
c.aracter really should appear where ' ' does.

154

Ii

Terminal and Text File Input/Output -- 6
CLPARS TER%,Ir:AL CFARACTER I!NFUT/CUTFUi

Lote:

Each character is represented by a single element in an

integer array. However, fcr convenience,the characters will be

cisplayed here as contiguous character strings, addressed via the

name of the array. Also, there is an ECS symbol attached to the

end of all the character strings enclosed in double quotes. Ihen

the optional field width portion of the 'A' conversion

specification is missing, the input field is a string of non-space

characters. All initial space characters are skipped over and the

input field is TERMINATED EY A SPACE CHARACTER or a NEW LINE. If

the field width is specified, then any initial space characters are

skipped over, and the FIELD WIDTH or a NEW LINE TERMINATES the

input field.

2) N = TRMGET('$2A3', S, T)

N = 2; S = "abc", t "d-"

3) N = TRMCET('$/A $A5', S)

N = I; S ="efg-1"

4) I' = TRMGET('$A $A tA', S, T, U)

N = 3; S = "abod"; T ="efg"; U ="12j5"

5) N = TRNGET('$/A3 $Al $/2A3 $C', S, T)

N = 2; S = "d"; T = '5' (no EOS; represented by single
quotes)

6) IJ = TRNGET('$/2A $A', S)

N = 1; S = "12j5"

7) N = TRMGET(':X2$A :PSA :P8 $A', S, T, U)

N 3; S = "cd"; T = "abed"; U ="fg"

155

Terminal and Text File Input/Output -- 6
OLFARS TERMINAL ChARACTER INPUT/CUTPUT

S) N = TRMCET('$A2C', S)

N 1 1; S = "abcd efg_12jt"

9) U = TRGET('ACC$C', S, T, U, V)

1 = 4; S = "abcd"; T ' '; U = ' V e

(Note: 'C' conversion specifier suppresses space skipping)

The following example shows how the 'execution time' field width

can be used.

10) N = TRMGET('$A*$A*I, S, 3, T, 5)

N = 3; S ="abc"; T "d ef"

6.1.4 Some Notes Cn Terminal I/C -

Both TRMGET and TRMPUT are written in assembly language.

TRMGET and TRMPUT are entry points into the routines FILGET and

FILPUT, respectively (see Section 6.3). Essentially, the terminal

I/O routines can be thought of as special cases of FILGET and

FILPUT.

A call to TRMGET is equivalent to:

CALL FILGET (terminal LUN, format-string, argl ...)

A call to TRMPUT is equivalent to:

CALL FILPUT (terminal LUN, format-string, argl ...)

156

LA

Terminal and Text File Input/Cutput --

OLPAFS TERMINAL CEAFHICS 1:1UT/GUTFUT

6.2 CLFARS TERMINAL GRAFHICS 71FUT/CUTFUT

Along with the terminal input/output routines, CLPARS has a

set of graphics input and output routines. Most of the output

routines are utilities closely resembling the FLTI.AF FCRTRA1.

routines requested by the buyer. The graphics input routine,

necessary for some CLPARS functions, is not in the FLTVAP routines,

and had to be written. The following sections discuss in more

detail the actual utilities chosen to be part of the CLPARS

graphics I/O.

6.2.1 Graphics Input Utility -

The graphics input routine (GIN) is used to obtain graphic

display screen coordinates. First, this routine places the

graphics terminal into graphics input mode. It then waits for the

return of a graphics screen coordinate and the character that was

typed in to send the coordinate. If the display terminal does not

have cursor wheels, a joystick, or some other hardware graphics

cursor manipulator, GIN must take over this function (i.e., special

characters will have to be reserved for graphics cursor movement;

possibly 1-left, r-right, u-up, d-down). This routine is a

system-dependent program.

GIN's program usage would be:

CALL GIN(X, Y, CHAR)

where all of GIN's arguements are of integer type. X and Y are the

terminal horizontal and vertical coordinates, respectively. CEAR

157

"AL.

Terminal and Text File Input/Output -- 6
GLPARS TERMIviIAL GRAFHICS INPUT/OUTPUT

will be the character used to send the coordinates back to the

calling program.

6.2.2 Graphics Output Utilities -

The following depicts the type of graphics output functions

that CLPARS needs to have for its display purposes:

- the ability to place a text string at a specified point

- the ability to draw lines

- the ability to erase the screen and "home" (move to the upper
left corner) the cursor.

The subsequent paragraphs describe the routines that were

chosen from the PLTMAP utilities for the OLPARS graphics display,

plus two additional routines written, MOVE and RCTNGL.

6.2.3 TEXT -

This routine places a string of text on the graphics display,

starting at a given set of coordinates. The screen coordinates are

relative screen coordinates used to redefine the origin. Each

character of the string resides in a separate integer, and the last

integer position in the string must contain zero.

158

I ~ -i

Terminal and Text File Input/Cutput -- 6

CLPARS TERMII:AL GRAFHICS INFUT/CUTFUT

6.2.4 NARK -

This routine places a given marker at a specified set of

screen coordinates. The markers are those specified in the PLTMAP

utilities.

CLPARS uses this in its two-space display programs.

6.2.5 LINSEC -

This routine draws a line between two specified points. It is

used to draw display borders and data and logic tree structures.

6.2.6 ERASE -

This routine erases the terminal screen (and "homes" the

cursor, if not done automatically).

6.2.7 MOVE -

This routine moves the terminal screen cursor to specified

terminal coordinates.

6.2.8 RCTUGL -

This routine draws the outline of a rectangle given the

coordinates of two opposite corners.

159r~,i

Terminal and Text File Input/Cutput -- 6

GLPARS TEXT FILE INPUT/CUTPUT

6.3 OLFARS TEXT FILE INPUT/CUTFUT

Any CLPARS text file input routine will need a way to read

numeric characters from a file and convert then to binary

information. Likewise, a file output routine needs a way to

convert binary data into printable characters. The following two

sections describe the subroutines that will enable the CLPARS file

I/O routines to operate.

6.3.1 FILGET -

The calling sequence for FILGET is:

N = FILGET (lun, format-string, arg 1, arg 2, ...)

FILGET is a file input function subprogram. It reads

characters from a file, specified by a logical unit number (lun),

interprets them according to a format (identical to TRMGET format),

and stores the results in its arguments. The format string usually

contains specifications which are used to direct interpretation of

input sequences. See Section 6.1.3. for further information on

the format string.

FILGET returns as its value the number of successfully matched

and assigned input items. When the end of the file is reached,

FILGET will return a -1 as its function value. (On RSX-11M, if the

file being read is actually a terminal, a CTRL-Z will simulate the

end of file.) When the terminal is being read by FILGET, a program

termination symbol (null line) will also cause a -1 to return.

160

J,6

Terminal and Text File Input/Cutput -- 6
CLPARS TEXT FILE INFUT/OUTFUT

This is not true when FILGET is reading a file.

6.3.2 FILFUT -

The calling sequence for FILPUT is:

CALL FILPUT (lun, format-string, arg 1, arg 2, ...)

FILPUT is a file output subprogram. It formats, converts, and

prints its arguments to a file under control of a format string

(see Section 6.1.2.). The file is specified by a logical unit

number (LUN).

FILPUT signals its success or failure at writing to the file

with an appropriate error message. Both FILGET and FILPUT are

assembly I/0 routines.

6.3.3 Printing - CLPARS Output To A Computer Printer -

There are a few OLPARS programs that give the user the ability

to obtain printable listings (or text files) of a variety of OLPARS

data forms. Cluster plots, rank order matrices, and confusion

matrices are a few examples of the OLPARS data forms available for

printing.

The print utility commands create a file within the system, to

store the output to be generated. Once the printer listing

generation is complete, the utility makes a call to a system

dependent program (PRINTR) that will send the file to a printer for

printing.

161

Terminal and Text File Input/Output -- 6
CLPARS TEXT FILE INPUT/OUTPUT

The following is a list of print utility commands that may be

implemented. (The starred commands have not yet been implemented).

PRTRNK* - used for rank order displays or probability of

confusion or discriminant measure.

PRTLS - used to obtain certain basic statistical

information about a data base.

PRTCM - used to print out a confusion matrix.

PRTCLP* - used to print out a cluster plot.

PRTIDX - used to index a particular display or set of

display symbols, and obtain information about

the vector that the display symbol represents.

PRTLOG - used to list the logic of the current logic

tree.

PRTOSD* used to produce a printer simulation of a

one-space display (micro view format only).

162

Terminal and Text File Input/Cutput -- 6

OLPARS TEXT FILE I1;FUT/CUTFPT

6.3.4 CLPARS Data Tree Input/Cutput -

Users of CLPARS will probably have their data on various

mediums, such as disk or magnetic tape. CLPARS must be able to

read and convert a user text file, containing data, into an CLPARS

tree (that is, create a tree information and tree vector file with

the users' data).

Also, a user may want to take an existing CLPARS data tree and

create a text file of vectors to edit. Therefore, CLFARS must

convert its data tree to a "system" text file.

To make the programming of the above functions as minimal as

possible, all input and output data will have the same CLPARS

logical format. This format is specified in the programs FILEIN

and FILEOUT (for the RSX-11M system). Note, the output from

FILECUT can be used as input to FILEIN.

6.3.5 Some Notes On Terminal And Text File I/0 -

The internal binary representation of character strings within

a computer program varies from program language to program

language, from operating system to operating system, and from

computer to computer. The terminal and file I/O routines (TRMGET,

TRMPUT, FILGET, FILPUT) can alleviate this problem of internal

character representation by using an integer index (into a table of

characters) which points to the character to be represented. This

would make CLPARS I/O character strings system independent.

163

NOME

Terminal and Text File Input/Output --

CLPARS TEXT FILE IINPUT/CUTFUT

Under RSX-11M we have chosen not to include such a table

within the terminal and file I/O routines, because the ASCII 7 bit

character set and its internal form within Eigital Equipment

Corporation FCRTRAN already give us a convenient integer

representation for character strings.

Even though the terminal I/O routines appears to be a special

case of file I/O routines, there are some differences. For

instance, the terminal I/O routines will automatically "open" the

terminal logical unit number (if it is not open) while the file I/O

routines dc not.

164

11

SECTION 7

OTHER FEATURES

7.0 CLFARS FORTRAN CCE GENERATICN

A user may create FORTRAN code, which becomes a subroutine

called by other programs. This method is used in the measurement

transformation command (MEASXFRM). Note, the FCRTRAN code

generation program (in this case, NEASXFRM) may or may not be able

to call up a FCRTRAN compiler to compile the FORTRAN subroutine.

On systems that do not allow initiation of a FCRTRAI; compiler from

within a program, the user will have to compile his/her CLPARS

generated FORTRAN program. Under RSX-11M, CLFARS will be able to

call the FCRTRAN compiler (via a command file).

Example of user generated FORTRAN code:

Function Lescription: MEASXFRM is a means of transforming one data

set with dimensionality M into another data set of dimensionality N

(N may or may not = M). This transformation is done by means of

character arithmetic expressions. Measurement 'i' in the new tree

is symbolized by NM(i). Measurement 'i' in the old tree is

symbolized by CM(i).

165

II

Other CLFARS Features -- 7
CLFARS FCRTRAI CGCE GENERATION

For example, suppose we have, as the current data set, a tree

with dimensionality four and wish to create another tree with

dimensionality five. Furthermore, suppose each measurement in the

new tree is to be the same as that in the old tree, with the

exception that measurement five of the new tree is to equal the sum

of measurements three and four of the old tree.

The user would enter the following FCRTRAN statements:

NM(1) = OM(1)

NM(2) = OM(2)

NM(3) = OM(3)

NM(4 = OM(4

NM(5) = CM(3) + OM(4)

In the RSX-11M version of portable GLPARS, MEASXFRM is

implemented via a command file. An editor is initiated to accept

the above FORTRAN statements. The statements are inserted into a

subroutine which is compiled and linked with the rest of the

MEASXFRM program. The command file then causes the program to

execute. For more details, see MEASXFRM in the CLPARS VI Program

Specifications.

An additional capability to save the FCRTRAN subroutine is

available to the user. This way, (s)he can easily use the

measurement transformation created under MEASXFRM many times.

166

a .4.....-

Cther CLPAES Features -- 7
CLFARS LCCLEAI. STATEEIT IN'TEnFFETER

7. 1 CLFARS ECCLEAN; STATEN;E!ET INTERPRETER

There are several other instances where an CLPARS user ray

enter linguistic or Eoolean statements in the course cf analysis

(e.g., linguistic partition in structure analysis, linguistic croup

logic or linguistic reject regions in logic design). in each of

the cases, the user enters exactly one statement and vectors are

tested against this statment to see if a true or false value is

obtained. In order to make these programs (LIILCPART, LIhGLCG and

LINGRJCT) system independent, an interpreter program (INTRP5;

nterpret Eoolean) is incorporated into OLPARS to perform the above

test. This progi-m, which will be written in FCRTRAN, will be

system independent.

The Eoolean statement may consist of the following

information:

1. Measurement positions in a data vector.

2. Floating point numbers

. Logical Cperators

4. Arithmetic Operators

5. Arithmetic Functions

167

L •.."

Cther CLPARS Features -- 7
CLPARS ECCLEAN STATEM;EN TI:TEEPRETER

Additional advantages of this scheme are:

o I1o command file need be created.

o User interaction is simplified.

o The interpreter can check the syntax of the Eoolean

statement and it returns with an error flag if the

syntax is incorrect.

7.2 EATCH PRCCESSILG IN OLPARS

Batch processing in CLPARS is a system dependent operation.

For instance, MULTICS, a multi-user time sharing computer system,

allows "batch" processing (known as absentee jobs) to occur via a

command file (see Figure 7-1). The programs to be run, along with

the input to these programs, are all contained in a special command

file. The output from the programs, directed to a user terminal,

is placed in a special file within the user's directory for

examination at a later date. The absentee job is treated as if

there was a user at some terminal.
I

It is obvious that considerable familiarity with the

interactive queries of MOOS (MULTICS OLPARS Operating System)

functions is necessary since all queries must be correctly answered

with the command file. The absentee job in Figure 7-1 could be

performed on a number of data sets by simply changing the tree name

"datatree" to the names of other data sets.

168

Other CLPARS Features -- 7
0EATCH PRCCEEZ:NG -CLF1iZ

Under the REX-11 ysterr, the "AT" processor handles the

command file (batch) processing. In this system, the program's

terminal input does not come from a file, and the program's

terminal output is not put into a file. This means that the "AT"

processor does not treat a ccmmand file as a separate terminal.

(Hence, it will not be used in the RSX-11M portable CLPARS).

To make this "batch" processing transportable to different

machines, there should be two separate CLPARS. The difference

between the two systems will occur in the terminal I/0 packages;

one package will communicate directly with the terminal, the other

(in the batch system) will communicate with files (i.e., batch

OLPARS will get its commands from one file and put its terminal

output into another file).

The total size of the batch system could also be reduced by

keeping only the programs that create character output in the

system. This decision will be left up to the people who want a

batch version of CLPARS on their computers.

An example of an CLPARS command (batch) file cai. be found in

Figure 7-2.

169

Cther CLPARS Features -- 7
EATC: PRCCESSING IN OLFARS

cwd > udd > C > CLPARS (change working directory

to CLPARS)

restore data tree (restore the design data set)

4 (answer questions related to

300 console type and baud rate)

fisher (invoke fisher pairwise
logic)

0 (select option 0)

1 (select 1 threshold)

8 (set minimum vote count to 8)

yes (hard copy confusion matrix
and

yes list of errors to line
printer)

no (halt fisher calculation)

logout

Figure 7-1 A MULTICS Command File

170

Other CLFARS' Features -- 7
EATCE FiRCCESSINC 1,1 CLPAFRZ

SETES (set data set)

TREE1 (answer questions related to
treename and nodenarne

NODE1 (for the current data set desired)

FISHER (invoke fisher pairwise logic)

0 (select option 0)

1 (select threshold)

4 (set minimum vote count to)4)

YES (send confusion matrix and a list

YES of errors to line printer)

NO (halt fisher calculation)

NOTE: 1" delimits answers to program questions

Figure 7-2 Example of OLPARS Command File

171

Other CLPARS Features -- 7
BATCH PROCESSING IN OLPARS

;Nithin an RSX-11M OLPARS, the batch mode will be handlea in

the following manner. A separate "batch" CLPARS would be in

existance. A user would create the command file via an editor

program. (S)He then runs the batch CLPARS (ECLP) while in his/her

OLPARS directory. BCLP executes the ccmmand contained within the

command file. Cnce BOLP is started up, the user could not run the

interactive version of OLPARS, but could run other tasks within the

RSX-11M system. Located within the user's directory, would be the

file containing all of the terminal output from the batch CLPARS

session. The user could use a system command (PIP for instance) to

view the contents of the file after execution of ECLP.

7.3 EXPANDABILITY

Adding new applications programs to FCRTRAI; CLPARS, or

inserting additional options into already existing programs, should

be a relatively simple task for the following reasons.

o If a new command is to be added, the entire system

does not need to be recompiled or have its tasks

rebuilt. The new program must be compiled together

with the OLPARS subroutines it needs, and its name

must be inserted in the list of allowable command

names that is accessed by the CIP (or the operating

system).

172

- 2d_ , m% ' 172

- -" ' ' :' ' ! t
'

... ; - ': : = " / , t "

Other CLPARS Features -- 7
EXFANEADILITY

o The modular construction of the CLPARS programs will

mean that a good part of the code for any new program

will already exist.

o New options in existing routines can be programmed by

changing only the particular routine and, most

probably, by changing only a few of the subroutines

of that particular routine. Many of the CLPARS

commands have been designed to accommodate additional

functions by adding subroutines and giving the user

additional options.

173

'I'

SECTION 8

SYSTEM DEPENDENCIES

In a system as complicated as CLPARS, where there is a large

amount of input/ output with files, the printer, and especially the

terminal, there must be system dependencies to handle these

features as well as others. In order to make CLPARS as portable as

possible, the system dependencies have been isolatec into a set of

routines that will be called by the rest of CLPARS to perform the

dependent functions like I/O. In this section, we review the

system dependent functions of portable OLPARS with explanations

here, or with references to documentation elsewhere.

o Start Up and Sign Off

Signing on and off OLPARS is system dependent. OLPARS needs

an initialization routine to set terminal characteristics in files,

or initialize other files. When there is no executive program, the

user must call this routine (HELOLP) when (s)he first starts up the

system. If an executive command input processor (CIP) program

exists, then this initialization routine can be called

automatically for the user.

When the operating system has special interrupt functions to

abort programs, signing off of OLPARS can be slightly tricky. If

OLPARS programs do not have the ability to catch the abort

interrupt signal, it could very well mess up the CLPARS file

174

System Eependencies within CLPARS -- C

structure. If this is the case, users should avoid the signal

abort feature on their system when running CLPARS. Under RSX-11M,

FCRTRAh, a user may type a control-Z (-Z) when entering input to a

program. This simulates an end-of-file interrupt signal. Since

this interrupt can be caught by programs, RSX-11M OLPARS users need

not worry about using it.

OLPARS programs should leave gracefully, so there is a

standard procedure for exiting OLPARS programs. If a user enters a

null line during an input session with an "OLPARS program", the

program will exit. To exit "CLPARS" (that is, the CLPARS comand

level) the user must type BYEOLP; a null line will not allow

system termination at the command level.

o The Command Input Processor (CIP) (See Section 2 and
Appendix A)

o Spawning (See Appendix A)

o Compilation and Execution of FCRTRAN Statements typed
in by the user (see Section 7.0)

o Terminal and File Text I/O (see Section 6)

o Use of a "Batch" OLPARS (see Section 7.1)

o Programmer Aid Options (see Appendix G)

o Character Eandling (see Section 6)

oo character string compariscns

oo character string terminator

co character string length determination

175

...

System Eependencies within CLPARS --

o Processing bit maps in the LI file (see Section 4.6)

o Creating "system" file names from CLPARS tree names

On computer operating systems that have file names which are

smaller than CLPARS tree names, a unique, algorithmically generated

file name must be produced from the tree name. An alternative

method would be to create a set of unique file names, having

nothing to do with an CLPARS tree name. The file name would be

associated with the tree name through some file or table. (See

discussion of File Code Table in Appendix E).

176

AFPENDIX A

THE CCMMAND I11FUT PROCESSCR (CIP)

or

How to "talk" to CLPARS on RSX11M version 3.2

This section describes the programs and files necessary for
conteiving the Command Input Processor (CIF), "login" function

(HELCLP), and "logout" function (EYECLP) under the DEC operating

system RSX11M version 3.2 (reader must be familiar with this

operating system).

The CIP program only partially implements the CIP function.

Its job is to prompt the user for an CLPARS comand name and make

sure what the user has typed is valid (it accepts initial

substrings of all commands, except BYECLP). It produces a command

file which invokes the OLPARS command requested by the user

(explained later).

The CMINIT program, which initializes the terminal screen

parameters and CLPARS system directory string* in the user's

Communications (CM) file, partially implements the HELCLP function

(hello OLPARS, or "logging in"). It welcomes the user and displays

The operating system manager must "install" the two programs
CIP and CHINIT as "...CIP" and "...CMI", respectively, because
they both need to access their system command line (via system
supplied subroutine, GETMCR) for the OLPARS system directory
location.

177

Commanc Input Frocessor (CIP) on RSX11,, v3.2 -- A

a list of terminal types known to CLPARS. It asks the user to name

the terminal type (s)he is using. The program uses the name typed

in to find a file containing the screen parameters to be placed irn

the user's Communications file. It is important that the correct

screen parameters are obtained for the given type of terminal;

otherwise, erroneous results may occur when using "interactive"

CLPARS displays. OLPARS essentially remembers the last terminal at

which the user has "logged in", so supplying an empty response to

the CMINIT prompt is perfectly safe as long as the operator is at

the same type of terminal (s)he has used at his/her last CLPARS

session.

Three command files complete the implementation of the CIP,

HELOLP, EYECLP functions. The files are "HELOLP.CMI" ,

"CLPDIR.CML" , and "BYEOLP.CMD" . The user "logs" into CLPARS by

invoking the HELOLP command file*. The command file locates the

CLPARS directory by invoking the "CLPDIR.CMD" file**. HELOLP then

queries the user for the "login" name assigned to him/her by the

OLPARS manager. It uses the "login" name to find out where the

user's CLFARS direc.ory is located. Next, the CNINIT program is

The user may type "9HELOLP" or
"@[directory-specification]HELOLP" to start up the command
file. A "login" request will follow. To skip the "login"
request, the user may type "@HELOLP <user name>", where
<user name> is the user's "login" name.

** "CLPDIR.CMLA" must be located in the same directory in which
"HELOLP.CMD" resides. "CLPDIR.CMD" should be modified by
the person responsible for maintaining CLPARS so that it
points to the directory in which all the CLPARS commands
reside (the CLPARS system directory)

178

Com.mand Input Frocessor (CIF) cn ESX11N v3.2 -- A

invoked by 1]ELCLP. Finally the CIP program is activated and CLFAES

is ready to do work for the user.

The command file created by the CIP program (called

"CLPCC.CML'1) is invoked by the EELOLP command file after the CIF

program terminates. The "CLPCCM.CNIC" file contains the necessary

information needed to start up the user requested CLPARS ccmmand.

It also lets the HELOLP command file "know" which CLPARS command

has been executed. If the CLPARS "logout" command (EYECLP) was

requested by the user, the "BYECLP.CME" file is invoked. Cnce

"EYEOLP.CMD" is finished, the HELOLP command file stops its own

execution.

The following two pages illustrate the OLPARS Command Input

Processor, "login", and "logout" functions, and relationships

between RSX command files and OLPARS programs implementing these

functions.

179

_______II__III__III I

Command Input Frocessor (CIF) on RSX11 : v3.2 -- A

HELOLP CCN ALD FILE (HELCLF.C-E)

1. invoke CLPDIE.C.C
2. query user for login name
3. call CMINIT program

repeat
4. call CIP program
5. invcke CLPCCI :.C.E

until (user types "EYECLF")

OLPDIR CGMAND FILE (CLPDIR.CND)

locate CLPARS system directory

CMINIT program

1. ask user for terminal type
2. initialize terminal screen

parameters and CLPARS
directory string in user
CM file.

COMMAND INPUT PRCCESSOR program

repeat
1. prompt user for CLPARS

command
until (command is valid)

2. create CLPCCM.CME

OLPCCM CCM.ND FILE (OLPCCM.CME)

initiate user requested CLPARS
command

BYEOLP CCMMAND FILE (EYEOLP.CMD)

clean up loose ends

OLPARS Command Input Processor, "login", and "logout"
functions Summary

180

AD Alla 731 PAR TECHNOLOGY CORP NEw HARTFORD) NY F/A 9/2
ON-LINE PATTERN ANALYSSIS AND RECOGNITION SYSTEM. OLPARS VI. PRO--ETC(U)
JUN A2 S E HAEHN D MORRIS

UN LASSIFIED PAR-82-15 N

. mmommmmmmu
smEEEEEEEEmhE
EEEEEEEEEmhhEI
EomhhmhEEEEEEEE

Command Input Frocessor (CIF) on RSX11M v3.2 -- A

Any RSX11M directory
I , contains

strings
HELGLP.CMD 1

IMLAC

OLPARS system TEK4014
directory < --------- OLPDIR.CMD TEK4C51

Login Name Validation

and User Directory OLPARS user
Information ----------- > directory

I---------------------I I I

:TERMINALS.TXT ----------
I *I I I

TEK4051.TXT ------------- > CMINIT --------------- >: CM.CLP H
I ------------------- I I /I I--------------------

IIMLAC.TXT ----------- /I I I I: I / I
I ------------------- I I I II

:TEK4O14.TXT -

I---------------------I -----------

!PROGRAMS.TXT -------------- > CIP -------------- >1 GLPCCM.CMD H

I--

I

:BYECLP.CMD

----------- II

Olpars Commands!

Relationships between RSX command files and
OLPARS programs implementing the Command
Input Processor (CIP), "login", and "logout"
functions

181

-

AFPENLDIX E

CLPARS RSX-71M SYSTEM CEPE1NDENT FILES

B.1 The CLPARS Directory

Each CLPARS program including the CIP, resides as a segent

task (.TSK) file in the CLPARS directory. There are also several

purpose files which reside in thi: directory. These include the

OLPARS option file (OPTION.CLP) the CLPARS option text file

(OPTICIN.TXT), the CLPARS terminal screen coordinate files

(including TERMINALS.TXT), and the OLPARS program dictionary

(PROGRAMS.TXT). These files are described in the following

sections.

B.1.1 OLPARS Option File

The option file contains the names of all OLPARS commands, an

associated option number, and a possible list of other options

(programs) that are associated with a given option. Under RSX-11M,

the option file has the name "OPTION.OLP" and is a fixed length

record (block I/O) file.

The first word of the first record of the option file contains

the number of options in the file. The next portion of the file

contains the option name - option number associations. This part

of the file has the option names in alphabetical order. The next

182

RSX11:: System Eependent Files -- L

section holds the option numbers and option list pointers. The

option numbers are sorted into ascending numerical order. The last

section contains the option list, which is nothing more than a list

of pointers to the option names in the option name-option number

section. The first number in the option list is actually the

number of options contained in the list. (See Figure E-1).

The two CLPARS programs that access this file are SETCPT and

GETOPT. SETOPT looks through the option name-option number section

for an option name. It returns to its calling program the option

number of the option name for which it was looking. If SETCFT

cannot find the given option name, it will return 'ANYTHING's

option number. GETOPT scans through the option number-option list

pointer section for an option number. It will return to its

calling program the names of the options pointed to by the elements

of the option list section. Note that an option may have more than

one option list associated with it, i.e., multiple menus (see

Figure B-1, option #20). It is also possible that an option does

not have an option list (e.g., option #90 in Figure B-1).

B.1.2 OLPARS Option Text File

A system dependent program called ,AKOPT creates the options

file (CPTION.OLP) from a source text file (OPTICN.TXT) containing

each CLPARS command with its option number and option list. This

program should be used only by CLPARS programmers/maintainers to

create the proper option file (see Appendix C for usage of MAKOPT).

183

RSX11M System Lependent Files -- B
OLPARS CPTICN FILE

OPTION FILE

RECCRC NO.

1 9 # of options

2 ABCE 10

3 AKLME 20

4 DEFG 40

5 EFG 100 Option name -

Option number
6 FLX 50 Section

7 LVD 60 (header)

8 STU 70

9 VDA 80

10 ZB 90

11 10 20
12 20 21 22 23
13 40 24
14 50 25 Option number -

Option list pointer
15 60 26 Section
16 70 27 (logical entry)
17 80 28
18 90 -1
19 100 29

20 4 4 5 3 8
21 2 7 4
22 2 8 9
23 1 6 Option list
24 1 8 Section
25 1 5
26 3 8 4 6 (logical entry)
27 2 4 2
28 2 3 5
29 1 8

Figure B-i OLPARS Option File (OPTION.OLP)

184

RSX11N System [ependent Files -- B

The format of the source text is as follows:[
PRCGRAE, NAME : OPTION # :ENU C OPTICN 1 ... CPTICI1 15

The program name refers to an CLPARS command. The maximum

length of a program name allowed in the CFTION.CLP file is 10

characters. The option number is an arbitrarily assigned unique

number.

Once the option number is assigned to a program, that program

should always retain the same option number. The reason for this

is that user files (logic trees, for instance) retain the option

number (of the program that created them) as data. If the option
number of an existing OLPARS program were changed, all the user

files containing that option number would now have incorrect option

numbers.

The menu number represents the different possible menus

(option lists) that a single OLPARS command might display. The

menu numbers need not be in order, but they must be continuous

(that is, if there are four different menus, the menu numbers used

must be 1, 2, 3 and 4).

The option list is a set of "other" OLPARS commands that may

be used after "PROGRAM NAME" has completed it computations. The

command names are separated by spaces. The last option should have

a "slash"(/) following it. The slash must be separated from the

last option by at least one space (see Figure B-2).

185

RSX1lM0 System ILependent Files -- B
OLPARS OFTION SOURCE TEXT FILE

This example format
was used when producing
the option file found
in Figure E-1.

ABCD 10 1 :DEFG EFO AKLML STU/
AKLMD : 20 1 LUD DEFG/
AKLMD : 20 2 :STU VDA/
AKLMD : 20 3 FLX/
DEFG : 40 1 :STU/
EFO :100 1 STU/
FDX :50 1 EFG/
LVD :60 :1 :STU LEFG FDX/
STU :70 :1 DEFG ABCD /
VDA :80 :1 :AKLMD EFG /
ZBL 90 :1: /

Figure B-2 OLPARS Option Source Text File

186

FRSX1 System Lependent Files -- E

I
The maximum number of options allowec in the opticn list is 15.

A semicolon found in column one of any text record will denote

a comment line (a line to be ignored by the MAKOFT program). Blank

lines are not allowed in the file (they cause IMAKOFT to quit

reading the file). The option list may extend over several lines.

If this occurs, comments !.UST NOT separate the lines.

In the example given (Figure E-1), the programs names are in

alphabetical crder. This is necessary to create a proper option

list file.

In the current 'CPTION.TXT' file a few of the program names

have been commented out because of space consideraticns within the

MiAKOFT program. Those that have been commented out will name

'ANYTHING' as their option list (see SETOPT in section B2). In

fact, any program (with a name in the 'OFTION.TXT' file) that does

not alter the mathematical projection of a data set, or the actual

vectors within the current data set may be commented cut.

B.1.2.1 Future Option File Maintenance

A modification to the current option file scheme would give

OLPARS maintenance people better control over the consistency of

the "ANYTHING" command found in CLPARS. A description of how the

"ANYTHING" command works is now in order.

187

RSX11N System Eependent Files -- B

Currently, AIiYTHIING is a very simple prcgram. It simply reads

a text file (ANYTHING.TXT) and prints it out to the user's

terminal. The file contains a list of all the CLPARS programs and

the category in which they reside. This means that whenever a new

command is added to CLPARS, both the CPTIC N. TXT file and

ANYTLIN.G.TXT file must be modified. This could cause consistency

problems for an OLPARS maintenance person if (s)he forget (heaven

forbid, not me) to alter both files. To subvert this problem,

changes would have to be made to the CPTICN.TXT file (thus, the

GFTICN.GLP file), the VAKOFT program and the ANYTHING program.

I. To the CPTION.TXT file, a category code would be added to

each program record. Note, all commands would have to be

entered into the CPTION.TXT file (not "commented" out like

some are now to save array space in MAKOPT).

2. MAKOPT would have to be changed to handle the category code.

To save space in the program, a temporary file would have to

be created for option list storage (which means a "re-think"

on the whole MAKCPT algorithm).

3. The ANYTHING program would be re-written to read the new

CPTION.CLP file created by MAKOPT (The ANYTHING.TXT file is

no longer used). It would then organize the program names

according to their category code, before printing out the

results to the terminal.

188

RSX11X System Eependent Files -- B

For an alternative to the abcve, NAYCFT could do all the

categorization work and add another list to the CFTICNl.CLP file

with all the programs placed within their own categories. Then

AIYTHING would be less complicated than previously mentioned. This

modification (on system dependent programs) is only suggested for

easier maintenance of CLPARS.

B.1.3 OLPARS Terminal Screen Coordinate Files

The terminal screen parameters (see section 5.1.4) are stored

in individual text files found in the CLPAR system directory. The

name of these files are stored in the file TERVIIJALS.TXT, also

found in the same directory. When a user "logs" into CLPARS (see

Appendix A), the TERMINALS.TXT file is displayed at the user's

terminal. They, in turn, choose one of the terminal names (file

names, without the filename type or extension name added) from the

list displayed. The file type, ".TXT", is attached to the terminal

name chosen. The resultant name is used to access the screen

parameters file. The screen parameters are stored in the user's

Communications file. The following text shows an example of the

contents of a TERMINALS.TXT file and the contents of a screen

parameters file.

1
j 189

SXI11N System Dependent Files -- B

Example Contents of TERMI.NALS.TXT

tek4C 14a - Tektronix 4014 with smzllest size characters
tek40 14b - Tektronix 4014 with next to smallest characters
tek4014c - Tektronix 4014 with next to largest characters
tek4051 - Tektronix 4051
INMLAC - Tektronix compatability mode only

Example Contents of TEK4C51.TXT

640 Ws - no. of display units in screen width
480 Hs - no. of display units in screen height
460 Wd - no. of display units in display width
391 Hd - no. of display units in display height

9 Wc - no. of display units in char. width
14 Hc - no. of display units in char. height
88 a - x coord. of lwr. left corner of display
75 b - y coord. of lwr. left corner of display

548 c - x coord. of upr. rt. corner of display
466 d - y coord. of upr. rt. corner of display
28 MrW - number of rows in a cluster plot grid
40 Ndl - number of cols. in a cluster plot grid
74 LcH - number of characters in a screen line

0 Not used, yet
133 e - x coord. of left side of 1 space base line
96 f - y coord. of lowest 1 space base line

503 g - x coord. of right side of I space base line
10 Nc - max. no. of classes on 1 sp. macro plot
28 Ds - distance between macro base lines

B.1.4 CLPARS Program Cictionary

The CLPARS program dictionary (PROGRANS.TXT) is a simple text

listing of all the OLPARS commands, kept in alphabetical order.

The Command Input Processor (CIP) uses this list to verify whether

or not the CLPARS user has entered a legitimate CLFARS command.

The file may contain same line comments. There must be at least

one space between the program name and the comment.

190

FRSX11Md System Cependent Files -- E

Example of a Program Lictionary:

ANYTHING ; This programs displays the A1dYTHING.TXT file

BYECLP ; program used to exit CLFARS

CRAt"DTS ; create a random data set

DDATANOD ; delete a node from a data tree

B.2 The User's Lirectory

Each CLPARS user must have an PSX-11M directory to store local

OLPARS user files. These include fixed and variable files,

temporary sequential files containing information to be sent to a

line printer, and ASCII data files. The fixed and variable files

have been discussed in great detail in earlier sections. The

sequential files for line printer output are created and opened by

a system dependent program OPENS. They are written into by the

routines that produce line printer output. An operating system

utility (PIP, on RSX-11M) will cause the file to be printed and

then deleted (depending on local operating system configuration)

from the user's directory.

191

RSX11r-: System Cependent Files -- B

The ASCII data files are used during the process of reading cr

writing data to files. In order to create an CLPARS data tree frcm

data within a file in the user's directory, the data rrust be in

CLFARS data file input format (see the descripticn for FILEIi in

the CLPARS User's Manual). Similarly, the data file create, by

FILECUT (the CLPARS data set dumping routine) is put into the

OLPARS data output format (see FILEOUT in the CLFARS User's

Manual). The file created by FILECUT can be used as input tc

FILEIN. Two of the user files which are system dependent are the

File Code Table (FCT.CLP) and History (HS.CLP) file. The FCT is

described in the next section. The Eistory file is described in

Appendix E, along with the CLPARS instrumentation package.

192

4 L

RSX 11., System Leendent Files -- E

E.2. 1 File Code Table

The CLPARS File Code Table (FCT) contains the system names of

the fixed and variable files that belong to an CLFAFS user. The

system names of the fixed files reside in the first 1C entries cf

the FCT as follows:

File Entry (File Code) RSX-11M File Nare

Communications 1 CM.CLP

Tree List 2 TL.CLP

Logic List 3 LL.CLP

Display Information 4 DI.CLP

Display Value 5 DV.CLP

Projection Vector 6 PV.CLP

Scratch 1 7 S1.CLP

Saved Vector 8 SV.CLP

Saved Transformation Matrix 9 SM.CLP

History 10 HS.CLP

Under RSX-11M, the FCT will be a direct access file (using

OLPARS "block" I/O) with a record size of 8 words. The first

record, the header, will contain a pointer to the next available

entry to be filled (first entry in the free list link), the number

of filled entries, a pointer to the last entry in the free list

link, and a pointer to the last entry in the table. These four

integers will be found in the first four words of the first record

(see Figure E-3).

193

RSX11M System Lependent Files -- F
FILE CCDE TABLE (FCT)

next available entry = 16
header number of filled entries = 14

last entry in free list link 19
last entry 4n file code table 19

entry 1 0 ' CM.CLP

2 0 , TL.CLP

3 0 ! LL.CLP

4 0 DI.CLP

5 0 DV.CLP

6 0 1 PV.CLP

--

7 0 1 S1.CLP

8 1 0 1 SV.CLP

i---
9 0 ; SM.CLP

10 0 HS.CLP

I--
11 0 1 LOGIC231.OLI

--
12 0 1 LCGIC231.CLV

13 1 18 1 TWENTYON.OLV
i--

14 13 1 TWENTYON.OLI
--

15 0 ; ALBERTAS.CTI

16 14 1
--

17 1 0 1 ALBERTAS.OTV
i--

18 19 ,I
--

19 -1 I

Figure B-3 File Code Table (file)

194

D~h

j RSX11h Systemr Lependent Files -- E

I
The rest of the file contains the FSX-1it. file name recorcs

that CLPARS needs to access the user's fixed and variable files. A

file name record consists of a free list link pointer and a file

name. In the first word of the file name record resides the free

list link pointer. The last seven words contain the file name,

including a null character (zero in CLFARS). When the free list

pointer is zero, the file name portion of the record contains the

file name of an existing RSX-11P file. When the pointer is

non-zero, the file name record resides in the free list of file

name records, i.e., the file name record is available for use by

OLPARS. In Figure B-3 entries 13 and 14 are in the free list even

though they have an old file name left in the file name portion of

the record.

The "free list" is a linked chain of file name records. The

head of the chain is found in the first record of the FCT. It is

called the next available entry pointer (see above).

The last link in the free list chain contains a -1, an invalid

link value. If the File Code Table is full, both the next

available entry pointer and the last entry in the free list link

equal zero. If the next available entry and the last entry in the

free list link are equal, but not zero, then there is one free

entry left in the File Code Table. This entry's link will contain

the -1 mentioned above.

195

RSX1Th System Eependent Files E-

The size of the File Code Table will determine the number of

trees an CLPARS user may have within his CLFAh5 directory. The

size of a user's FCT can be determined by an CLPAIRS installktion

manager when (s)he creates a user's directcry. It may also be

extended at a later date.

196

APPENlDIX C

STEPS TC TAKE II EXPANDING OLPARS U'7DEF, RSX-1 IN,

o Adding a cc.mand to CLPARS:

1. Put the name of the command in the program dictionary

(can use ELI editor utility) in alphabetical order. The

program directory is in the CLPARS directory.

2. Add the appropriate entries to the CPTICN.TXT file

(using ELI) in the CLPARS directory and execute the

program MAKOPT for a new options file.

3. Create a Help file for the command within the help

directory and add the command name to the help

dictionary(see Appendix D).

o Adding a user to CLPARS:

1. Create the user's "system" directory with the UFL

utility (provided by DEC on RSX-11M).

2. Add the user's "login" identification along with the User

Identification Code UIC) of his/her newly created

directory to the HELOLP.CMD command file, found in the

[197

Lktt . -

Expanding CLPAFiS CI; RSX1 1M~ -- C

CLPARS directory (use Erl).

3. Use the GEN programmer's aid to create the fixed files in~

a user's directory. (GEN can also be used to expand the

FCT table of an "old" CLPARS user.)

1 198

AFPEINDIX D

OLPARS "HELP" FUtNCTICO:

The help file gives the user information, at his/her terminal,

about an CLPARS subject or command. The "HELP" prcgram is system

dependent.

The "LELP"1 program prompts the user for input. The user may

type in the name of an CLPARS subject or command for which (s)he

desires information (help). Initial characters (substrings) cf the

command or subject name may also be typed. The user may type "ALL"

for a list of available help files.

All the text, used to describe a specific OLPARS subject or

command, is referred to as a "HELP" file. The character string

typed by a user, in response to the "HELP" program prompt, will

identify a "HELP" file to be accessed. All "HELP" files exist in

the same directory and have the same RSX-11M filename extension

(e.g. ".HLP") .

In addition to accessing the "HELP" files, the "|HELP" program

accesses a file called "HELP.TXT" (the help dictionary), and a file

called "HELPDIR.TXT." "HELP.TXT" contains an alphabetical listing

of subjects and commands for which help is available.

"HELPDIR.TXT" contains the device name and directory string needed

to locate the "HELP" files. It also contains the RSX-11M filename

extension for the "HELP" files. The "HELP" program uses the

1 39

The "hELP" Function -- D

infcrmation in "HELPDIR.TXT" to construct the complete ESX-11.

filename for the "HELP" file to be accessed. The filenames

"HELP.TXT" and "fiELFDIR.TXT" are "built-in" to the "HELP" program.

If for some reason one wanted to change these names, the "EELP"

program would have to be modified. These tto files reside in the

OLPAR system directory, where the OLPARS tasks are located.

The existence of the "HELP.TXT" file makes it possible for the

user to type a substring of a subject or command for which help is

being requested. The "HELP" program searches the "HELP.TXT" file

for the user-typed character string. If the character string is

found, the complete subject or command name is gotten from

"HELP.TXT" and is used to construct the "HELP" file name. Thus it

is not necessary for the user to type the entire name. The

user-typed character string should, however, be sufficiently long

to be unique within "HELP.TXT." If the character string is not

unique, help will be provided for the first subject or command in

"HELP.TXT" whose initial characters match the user-typed character

string. If the "HELP" program does not find the user-typed

character string in "HELP.TXT," the character string itself will be

used as the "HELP" filename and an attempt will be made to access

the help file. Thus, there may be help available for subjects and

commands which do not appear in "HELP.TXT." If the user wishes to

access these help files, (s)he must type the complete "HIELP"

filename (not including the filename extension).

2
200

The "LELF" Function -- 1

Cne special help file, the "ALL" help file, exists to provide

the user with a list of subjects and cormands for which help is

available. The format of the "ALL" help file ma vary. Subjects

and commands may be listed together or separately, or

alphabetically or categorically, depending on the system mznager"s

preference. Cne-line definitions for subjects and commands may be

provided (e.g. since RSX-11M filenames are limited to nine

characters, and it is difficult to describe a subject using only

nine characters, "HELP" filenames pertaining to CLPARS subjects may

not have meaning to a user. Therefore, a one-line description

could accompany the subject name in the "ALL" help file).

The "HELP" function is designed to be flexible. The format of

the help files (including the "ALL" help file) may vary and can be

designated by the system manager. "HELP" files may be added to the

help directory, at any time, through the use of a text editor. The

system manager should obtain user feedback to determine which

OLPARS subjects should have "HELP" files, and to decide uponh a

format for those files.

201

The "HELP" Function -- C

An example of filename construction using "HELP.TXT"
and "HELPLIR.TXT."

HELP.TXT ccrtains the following help filenames:

APPENDC

CEEFAULT
ESCRMEAS
FILEIN
L2EIGV

HELPDIR.TXT contains the character string:
DBG:[313,46].HLP < ANY USEFUL CCMMENTS MAY OCCUR HERE >

The user types the substring 'DSC' in response to the
"hELP" command prompt. The "HELP" program searches the
"HELP.TXT" file to find the string 'DSC'. "HELP" retrieves
the "HELP.TXT" entry for ,DSCRMEAS'. Next, it reads the
directory string from "HELPDIR.TXT" (a right bracket
indicates the end of the directory string). It appends the
name 'DSCRMEAS' to the directory string. Lastly, it reads
the filename extension ".HLP" from "HELPDIR.TXT" and
appends this to the directory-filename character string.
The result is the complete filename:

DBO: [313,46]DSCRMEAS.HLP

This "HELP" file is printed at the user's terminal.

202

~ - -;

AFPENLIX E

OLPARS Instrumentation Package

The instrumentation package is used as a debugging tccl

(instrument) for CLPARS programmers. The package consists of a

series of subprograms that will enable a programmer to keep track

of the entry and exit of a program, along with the values of

specific variables within the program.

E.1 Philosophy

The programming staff at PAR has already had experience with

the uses of an instrumentation package within a large conglomerate

of programs. It was found that the instrumentation package was a

very useful tool for debugging FORTRAN programs. Previous

packages, however, did not make use of prior knowledge of a

program's execution (i.e., the program's history). This meant that

when the instrumentation was enabled, every program (in the larger

system of programs) was traced, even if the program was fully

tested and debugged. In certain cases, this also meant that a

large amcunt of paper was used to print out the instrumentation

tracing.

203

IA

Instrumentation (Lebug) package -- E

With this in mind, we thought it would be useful for a

program, that has worked successfully for periods of time, to not

participate in the instrumentation tracing while the package was

enabled. To do this, each program's "history" would have to be

monitored.

In the OLPARS instrumentation package, all programs are

initially assumed to be "successful" programs. Since there is no

"history" for new programs, this assumption must be made. however,

if that program fails in its execution (i.e., it is not a

successful program), its "history" will now indicate this fact.

Further usages of the program will cause tracing to be seen (only

while instrumentation is enabled) until the program has completed

successfully some arbitrary number of times. Cnce the program

completes this arbitrary number of successful executions, the

tracing will again disappear.

With this method of program tracing, a programmer will not

need to worry about programs that have good "histories". It will

also keep the tracing to a minimum, thus, focusing a programmer's

attention on the problem areas of a program. The programmer will

not have to wade through piles of program tracing (a definite

savings since paper is an expensive commodity).

204

Instrumentation (Detug) package --

E.2 Using the Instrumentation Package

Tc use the instrumentaticn package properly, a program shculd

:ake reference to a few of the instrumentation programs in the

follouing manner.

In the "main" program, before any disk files are openec,* a

single call should be made to the instrumentation initializaticn

routine (INSINI). This routine is used to enable or disable the

instrumentation package for the current operation of the "main"

program, initialize various instrumentation variables, and open two

instrumentation information files. Before the "main" program

exits, it should make a call to INSRET.

All subprograms** of the "main" program should make calls tc

the instrumentation subroutines 'INSPGN' and 'INSRET' after entry

and upon exit to the subprogram, respectively. When tl.-

instrumentation packge is enabled, these two programs print out

subprogram entrance and exit messages on the instrumentation

listing, control the debug printout indentation, and keep track of

the "history" of each subprogram.

The reason for calling 'INSINI' before files are opeaed is
explained later in "Some Notes about Instrumentation Fackage
use on RSX-11M.

** There are a few programs that cannot make calls to the

instrumentation package (because they are used by the
instrumentation package; hence, infinite recursion would
occur)2.

205

=

Instrumentation (ebug) package - E

The abcve-mentioned steps are the only mandatory procedures to

be adhered to for proper usage of the instrunentation package. The

variable-printout (dump) calls to the instrumentation package may

be done at any time after the initialization routine (i!'SI1I) is

called.

E.3 The "history" aspect of the CLPARS Instrumentation Fackage

Throughout the source code of the instrumentation package

there is mentioned the concept of a program's "history." The stored

information necessary to keep tally of a program's successful

corpleticn is called a program's "history."

Each CLPARS program (not found in the instrumentation package)

will have its own history record which will be found in an CLPARS

"history" file.* The history record will contain the name of the

program, the length of that name, a tally requesting the number of

times this program is to report its usage after failure, and an

overflow link record pointer (see Figure E-1).

The "history" file is initially created by 'GEN', the CLPARS

"fixed" files generating program. The header portion of the

"history" file contains the record number of the first available

overflow record in the file (see Figure E-2).

The history file is one of the OLPARS user's "fixed" files.
Under the RSX-11M operating system, the file is named 'HS.CLP'.
Within OLPARS programs, the history file is referred to through
its two letter mneumonic, 'HS'.

206

Instrumentation (Iebug) package--
OLPAFR SIESTCF.Y FILE ERECCRE

I
I

.5 rel-:

Cverflow N~ame
Link Tally Name

Pointer Length

1-- rel --------- 1 rel rels-----

* Real element; under RSX-11M a 'rel' is composed

of two-16 bit words

Figure E-1 OLPARS History file record

207

2OI

instrumnentation (Lebug) package -- E
CLFARS LISTORY FILE

First Available overflow record
number (points to end of file) Ilead er

HISTORY RECORD

HISTORY RECORZ

Primary
Region

I---I
HISTORY RECORD

OVERFLOW HISTORY RECORD
---- --- --- --- --- --- --- --- -- Overflow

Region

Figure E-2 OLPARS History file

208

-, -Instrumentation (Debug) package -- E

I

Initially, the "history" records have their link polnter,

tally and name length set to zero.

The "history" file can be considered a "1.ash" table. A

program's "history" record is found by "hashing" the name of the

program, using the resultant number as a pointer into the history

file.

If two program names "hash" to the same history file record

number (called colliding), then the link pointer of that record

number is set to point to a record in the overflow area. This

overflow record becomes the history record of the second program.

Another collision to the same record number by another program

would result in the link pointer of the first colliding program to

point to a new overflow record. This process would be repeated for

each new "hash" collision (see Figure E-3).

The "hashing" function being used is a slight modification of

the division remainder algorithm found in most simple hashing

routines. To keep collisions to a minimum (thus, file access),

this algorithm requires that the number of entries in the table be

prime. (Further details of the algorithm can be found in the

OLPARS Software Reference Manual under the program name "HASH".)

"Hashing" refers to the concept of mathematically combining the
internal representation of a character string to create a
single number. The resulting number is usually used as a
pointer into some table.

209

Instrumentation (Debug) package -- E
OLPARS HISTCRY FILE

Header 23

--------------------a

1 20 A Programs in existence
with history records

2 0 are A,B,C,C,E, and F
where:

3 0 F
Hash(A) = Hash(E)

21 C Hash(C) = Hash(D)
Primary Hash(C) = Hash(E)
Region 5 0

That is, B collides
with A, while D and E

* collide with C.

19 0

20 0 B

Overflow 21 22 D
Region --------------

22 0 E

(Link) (Program)

Figure E-3 Example of link pointer usage in
OLPARS History file

210

Instrumentation (Debug) package -- E

The tally portion of the history record is used to decide

whether or not any debug information is to be printed when the

instrumentation package is enabled.

E.4 The Life of an CLFARS "History" Fecord

%hen the instrumentation package is enabled, the following

steps occur for the subprogram "EXAMPL".

The subprogram "EXAMFL" is currently being executed. Its name

is "hashed" and the resulting record number points to the history

record for "EXAMPL". The record is read from the "history" file.

It is found that the name length of the record is zero. Therefore,

this is the first time "EXAMPL" has ever been used within the

context of the current "history" file's existence. The name,

"EXAMPL", along with its corresponding length, is placed within the

record. the tally portion of the record is set to the current

value of the tally (zero, because it is a new record) plus a

specified tally increment. This information is saved within the

instrumentation package and is also written into the history file.

Consequently, if some error causes "EXAMPL" to abort its execution

(or if it is forced to abort by the operating system), the tally

within the "EXAMPL" history record is a nonzero positive number.

The nonzero tally indicates that "EXAMFL" failed. The value of the

tally represents the number of times (only while instrumentation is

enabled) "EXAMPL" must be entered and exited successfully, before

debug printout (trace) for "EXAMPL', will stop.

211

Instrumentation (Debug) package -- E

If "EXA MPL" has no "abortive bugs," just prior to exiting, the

tally of its history record (found in the 'HISTRY' common area of

the instrumentation package) will be effectively decremented by one

(or set to zero when decrementing results in a negative tally).

Then the record will be placed into the appropriate place within

the "history" file, writing over the old version of the record.

E.5 Instrumentation Package Programs

The following two sections describe the program modules of the

CLPARS instrumentation package available for programmer use. The

first section describes the "necessary" instrumentation programs.

An example "usage" is given for each program.

E.5.1 Control tracing and "History" maintenance programs

INSINI Instrumentation package initialization, used to

determine whether or not the instrumentation

package is to be enabled or disabled for the

current execution of the program calling INSINI.

CALL INSINI (Name)

where "Name" is a Hollerith string containing

the name of the program calling INSINI. (Name

should not exceed 9 characters.

212

Instrumentation (CebuC) package --

Example: CALL IhSI NI(' CCNI1:Cr')

G Instrumentation package program entrance rmocnitcr,

used to indicate that the currently executing

program has just been called (i.e., a call to

this program should be the FIRST executable

statement in a subprogram).

CALL INSPGM (Name, FgnTyp)

where "Name" is a Hollerith string containing

the name of the program calling INSPM (name

should not exceed 9 characters). "PgmTyp" is

an integer specifying whether a program is of

type "MAIN" (=0) or of type "SUEFRCGRAM', (=1).

(BIG NOTE: 'INSINI' calls 'INSFG1.' , for the

user with "PgmTyp" set to "hAIN". Therefore,

the user should not call 'IT;SPGM' in the

"main" program where 'II1SINI' is used.)

Example: CALL INSPGM ('GiXTND',1)

CALL INSPGM ('EQUALA',SUBPGM)

213

I A6.II

:nstru.::entaticn (Lebug) package -- E

I:.SRET - :nstrumentation package exit ncritor, used tc

indicate that the currently executing progrL.:

is about to exit (i.e., a call to this program

should be the LAST executed statement in th-e

calling rogram) .

Example: CALL IIUSRET

!NSSET Sets instrumentation package to a desired state,

either ron" or "off". The previous state of t!.e

instrumentation package is returned to the

calling program.

CLSTAT = INSSET (flwStat,Thresh)

where "NwStat" is the new state of the

instrumentation package (true = CN, false OFF);

"Thresh" is an integer value representing the

new debug printout threshold. Upon return,

INISSET will return the old state of the

instrumentation package as its function valLe

and set "Thresh" to the previous threshold value

of the package.

Example: THRESH = 3

CLSTAT = iNSSET(.true., TERESK)

2114

A,

Instrunentaticr. (Eebug) package -- E

E.5.2 Variable trace programs

IhSCR - Prints out the value of a character

string variable (i.e., prints out

characters stored in an integer array,

one character per integer).

CALL INSCHR (fame, Value, Length)

where "Name" is a lollerith string

containing the name of the variable to

be printed (or some pertinent descrip-

tion); "Value" is the address of the

variable to be printed; "Length" is the

number of characters to be printed,

when zero, the last character in the

string must be followed by a zero, the

end-of-string symbol.

Example: CALL IIISCHR ('CHAR', CHAR, 10)

CALL INSCHR ('Tree Name', TNAM, C)

215

I' ..

-nstrur.entaticn (>ebug) package -- E

7;SLLL Frints cut the value of a double precision

floating point variable.

CALL 1I-SEgL (;ame, Value)

where "Name" is a Hollerith string con-

taining the name of the variable to be

printed; "Value" is the address of the

double precision variable to be printed.

Example: CALL INSEBL ('CCRREL', CCREEL)

INSFLT Prints out the value of a single precision

floating point variable.

CALL INSFLT (Name, Value)

where "Nlame" is a Hollerith string con-

taining the name of the variable to be

printed; "Value" is the address of the

single precision variable to be printed.

Example: CALL INSFLT ('FAST', FAST)

216

A- k Aga-,

Instrumentation (Lebug) package -- E

I1NSIT Prints out the value of the integer variable.

CALL INSIT (Name, Value)

where "Eame" is a Follerith string con-

taining the name of the variable to be

printed; "Value" is the address of the

integer variable to be printed.

Example: CALL INSINT ('LENGTH OF NAM.E', I)

INSLCG - Prints cut the value of a logical variable.

CALL INSLOG (Name, Value)

where "Name" is a Hollerith string con-

taining the name of the variable to be

printed; "Value" is the address of the

logical variable to be printed.

Example: CALL INSLOG ('FIRST TIME FLAG', FRSTIM)

217

inztrur.:entation (debug) package-- E

E. Some [otes About :nstrumentation Fackage Lse on RZX-11V.

The instrumentation Package has its cwn cedicated log-ical unit

(fcr cutput) so that a prcgram!mer has the ability to direct the

deLL,g output to various computer peripheral devices (cisk, line

pr irter, terminal, etc.) . Normally, unoer SX- 1 I :, ;hc

instrumentation package puts its output onto the "systen." disk in

the file 'INSTEU.EAT'. This can be modified during the task build

(linking) stage (see ASC parameter in F.SX-11 task build m.anual) or

immediately prior to program execution (see REA command directive

in the RSX-11 operator's procedures manual). INote also that if

the cevice 'XAC: is defined, 'I1TRL.EAT' will be placed on that

device instead of the "system" (SYC:) device.

The logical unit used in CLPARS will be logical unit number

two. This logical unit assignment will not be guaranteed, however,

unless programmers call the instrumentation initialization routine

(ILSINhI) before any other files are opened. In general, it would

be a good practice to make a call to 'INSINI' the first executable

statement in an CLFARS "main" program. This convention is

necessary because logical unit assignment to files opened within a

program are done on a first-come, first-served basis (Logical unit

two happens to be the first unit in the list of available logical

units). If the convention is not followed, a programmer who

desired to redirect the debug output would have to figure out, for

each program written, to which logical unit the instrumentation

package was attached.

21E

AFPENDIX F

OLPARS RSX11M I/C Notes

F.1 Access to CLPARS User's Files

All access to any of the CLFARS User's Files .:ill be obtained

through the level II/level I manipulation and access routines (see

Figure F-I).

F.1.1 (Fixed Files)

The level II manipulation routines, CPENIFX and CREAFX, "know"

the size of the headers and logical entries of all the fixed files.

To open the files, these two routines call the level I routines,

COFEN and OCREAT, respectively. OCFEN and OCREAT retrieve/insert

the system pointer (i.e., the system file name) to the fixed file

from/to the File Code Table file, via the fixed file's file code.

(The file codes for the fixed files are predefined to be the values

1 through 10). COPEN and CCREAT then open the file and fill in the

appropriate information in the File Access and Control Table

(FACT). Cnce the FACT is filled in by the manipulation routines,

the CLPARS fixed files can be accessed by the level II access

routines, through the level I access routines, FGET and FPUT.

219

OLFAES I/C notes (on ESX-11,V operating system) -- F

F.1.2 (Data and Logic Files)

The level II manipulation routines CFENTR and CREATR "know"

the size of the headers of a user's data and logic files. They

must, however, calculate the size of a logical entry in these

files. The dimensionality of the data set, used to create the data

or logic tree, is all that is necessary for this calculation. This

information is stored in the Tree List and Logic List files, along

with a tree's file codes, which are used to retrieve (from the File

Code Table) the system names of the files that are used to simulate

the OLPARS tree. The files are opened by either CCPEN or CCREAT.

From this point, operations continue as mentioned under "Fixed

Files."

F.2 OLPARS Block I/O (File Access and Control Table) Notes

Currently, the file access and control table has the

capability to have fifteen block I/O files open at one time.

However, the entire FACT is not allocated at compile time. The

reason for this was to save task space. The FACT was broken into

two FCRTRAN common areas. Everything but the Physical Record

Buffer (PRBUFF) area was put in the common area labeled FACT. The

Physical Record Buffer was placed in its own common area, called

BLKBUF. The portion of the file access and control table that is

in the FACT common area has enough space for the fifteen open

files, as mentioned above. The ELKBUF common only has enough space

allocated for one block (256 word) buffer. (These allocations are

compile time allocations).

220

S

L?F.S :/C notes (on FSX-11k cperatir.g system) F

The ELLELF area can be exter.CE at task build (link) time by

using the task builcer EXTSC' cirective. This gives a programmer

the ability to specify, txactly, tre rumter of block I/C buffers

(maximum 15) to create, according tc the number cf files (to be

accessed using block I/O) ti'at are opened at any one time. (See

OLFARS command task building notes for FSX-11t.:, in section F.5).

The FRBUFF is separated from the FACT solely for the purpose

of adjusting its size at task build time (because this was the only

way it could be done).

F. OLPARS Record I/O Notes

Terminal and sequential file access is done through RSX-11's

record I/O facility. RSX record I/O has a buffet region that

corresponds to the CLPARS block I/O buffer, BLKBUF. The buffer is

called $$FSR1. This region's size is also controlled at task build

time, like the ELKBUF region. in this case, however, the region's

size is controlled by the ACTFIL task build parameter, instead of

the EXTSCT parameter.

i
221

,fil

CLFAEZ I/C notes (cn FSX-1 1,X cper-ting system) -- F

F. CLFARS File 1/C Comunicaticn Faths

Figure F-I shows the r:,laticr.ship of ccr:munication tetween

CLPARS prcgrarns, files, and data areas. Following is an

explanaticn of the figure.

F.L.1 (Lcical Urjit Allocation)

There is a global common area within CLPARS which contains

controlling information about the allocation of logical unit

numbers for both record and block I/O. The area is described as

the currently available logical unit numbers table (CALUN). The

table contains information about 15 logical unit numbers. Logical

unit numbers are dispensed, upon request from the "get logical unit

number program" (GTLUN), on a first come, first serve basis. GTLUN

searches the table from beginning to end for a free unit. When one

is found, GTLUN marks the unit as being used and returns the unit

number to its calling program.

Logical units become "free" or available when the "release

logical unit number program (RELUN) marks a unit for reuse.

The purpose behind this type of logical unit allocation was to

free the programmer from "worrying" about which logical units could

be used when opening a file.

222

,=, ,ll i i I r II ~ rll]"l "I

II

z -

z z z 0U.

Zu *

zU z I. - cc -J C
U) J - L LU -C *A

CL CL~ UJ U)

ULu. I&*** -j =

o4 Ca4 p.W 0 0JJi 4J1

>> U)U 0 > a~ w O.

V).0

UU dc LL oC

a. *U V-

- to I- *U UL

> u

a: xx x
I.-. U. LL L -
#A U) z c Z C*

CacCL () I .*

223

CLFAS I/C notes (on ESX-11 1 operating syster) -- F

F. 4.2 (Elock I/C)

A command program that accesses an CLPAFES user's fixed data or

logic files must first call the appropriate level II '"cpen" rcutine

(i.e., CFEINTR or CREATE for tree files, CFENFX or CREAFX fcr fixed

files). if a tree file is being opened, information about the file

must be retrieved from (or placed into when creating) the Tree (TL)

or Logic List (LL) file. From this point, all remaining actions

occur for both tree and fixed files. The level II "open" routines

call the level I "open" routines. They, in turn, open the File

Code Table and retrieve the "system" file name(s) of the file(s) to

be opened. The level I open routines call the level zero* block

I/C open routines (FOFEN, FCREAT) to actually open the "system"

files. These routines request a logical unit number from the

available pool of numbers (as mentioned above) and open the system

file, which causes system file information to be placed into the

device table ($$DEVT).**

Level 0 programs mentioned here are RSX-11M assembly programs
that communicate with the operating system directly for
opening, closing, reading, writing, etc. of a file.

** The logical unit number is used as an index pointer into the
device table.

224

CLPARS 1/0 notes (on EEX-1II. operatir" system) -- F

The logical unit number is returned back to the level I "open"

routines. The "open" routines locate a free file cefcrictcr .ithir

the File Access and Control Table (FACT), through che "set file

descriptor program" (GETFID). Cnce the file descriptor is

obtained, the logical unit number, along with other appropriate

information, is placed in the FACT. The level I "open" routines

return to the level II "open" routines the value of the file

descriptor, which is subsequently given to the upper level and

support/command programs.

Once the files are opened, they can be accessed by the command

programs through the level II, level I, level C path of programs.

The level I access routines (FCET, FPUT) use the previously stored

file access information in the FACT to direct the level zero

routines. The level zero routines perform the actual block I/C

access of the RSX-11M system files. The routines place/retrieve

those blocks into/from the Fhysical Record Euffer area (PREUFF) in

the FACT.*

To close the CLPARS block I/O accessed file, one of the

appropriate level II "close" routines (CLOSTR, CLOSFX) is called.

The level II "close" routines pass the file descriptor to the level

I close routine (OCLOSE). It obtains the logical unit of the file

to be closed from the FACT and calls the level 0 close routine.

The "system" file is closed (this clobbers information in $$DEVT)

The PRBUFF is not actually contained "in" the FACT, but is
considered part of it.

225

OLFAR S I/C notes (on ESX-1 1Y operating system) -- F

and the logical unit is marked "as available" in the logical unit

pool.

F.4.3 (Record I/C)

A command program that accesses the user's terminal simply

uses the terminal I/O package (TRMGET/TRMPUT). Internally,

however, the terminal access programs can "sense" when their

special logical unit** has been opened or not. When the unit is

closed, TRNGET or TRMPUT makes a call to the terminal open routine

(TRFCPN, found in the level 0 file manipulation routines). The

"system" then places information about the file (terminal) into the

device table ($$DEVT). The terminal routines now have the ability

to access the terminal.

To access an RSX-11M sequential (variable length record) file,

the command or support program must first open the file with the

support file "open" routine (OPENS). The support routine calls a

record I/C level zero "open" routine (VOPEN, VCREAT) to perform the

actual "system" open.

As in block I/0 "opens," the level zero "opens" requests a

logical unit number to use and performs the "system open," which

fills in the device table. This unit number is transferred

directly back to the program that requested the file to be

"opened". The sequential file access programs (FILGET, FILPUT) can

* Logical unit 1 has been reserved for terminal I/C and is not
found in the currently available logical unit table.

226

CLPAFS :/C notes (on RSX-112 opcrating system) -- F

now access the opened file. (Information is buffered in the $.FSR1

region for both the terminal access and sequential file access

programs).

To close a sequential file (thus, flushing its buffer), the

support file manipulation "close" routine must be called. This

routine calls the level zero close routine, which closes the file

and releases the logical unit number in use.

F.5 CLPARS Command Task Building Notes for RSX-11M

Lisregarding the possibility of programs being "overlaid," the

following RSX parameters will be used when task building (linking)

an CLPARS command program. They are:

ACTFIL, EXTSCT, UNITS, GBLPAT, and ASG

where,

ACTFIL - specifies the number of record I/O files to

be open at any one time. This parameter

rt.ulates the size of the record I/O buffer

region ($$FSR1).

EXTSCT - is used to control the size of the block I/O

buffer region (ELKBUF).

UNITS - specifies the total number of files open at

any one time (that's both record and block

I/O files). This parameter controls the

size of the logical unit device table region

($$DEVT).

GBLPAT - is used to specify the number of block

227

- 4,,. • - - . - - J , . ", I

CLFARS I/0 notes (on REX-11M operating system) -- F

buffers allocated. The use of this

parameter will help protect the programmer

when developing and debugging a new program.

It will prevent him from clobbering

(writing over) data areas outside the block

buffer region (ELKEUF).

ASG is used to assign logical units to

particular devices at task build time.

228

CLPARS 1/0 notes (on RSX-11t operatir.g system) -- F

The following is an example of a task build command file for

tuilding a non-overlaid CLPARS command. For more detail, refer to

the RSX-11,: task builder manual.

PRCGAI/CF/FF=PRGRAM, [313,32jCLPARSLIE/LE

;PRCCRAM - name of the CLFARS command being built

;/CF - makes task checkpointable, so it can be swapped out of
memory in a multi-user environment.

;/FP - tells task builder that the floating point processor
is used by the task

;[312,32]OLPARSLIB/LB - the CLPARS subprogram library,
which happens to be in directory [313,32]

/

;There is one record 1/0 file open in FRCGRAM.
ACTFIL = 1

;There is one block I/O file open in PRCGRAM.
EXTSCT = BLKBUF:1000
GBLPAT = PRCGRAM:BUFCNT:I

;Note: Both numbers in the above parameters are octal. ELKBUF's
size is in bytes. It should be extended (for more block
I/O files to be opened) in increments of 1000 (8) or
512 (10). If neither parameter is used above, it should
be known that there is one block buffer allocated at
compile time (i.e., ELKBUF has 512 (10) bytes allocated
and BUFCIET is set to 1).

; There are a total of two files opened at any one time in FRCGRA I.
; Currently the maximum number allowed is 15.
UNITS = 2

; Logical unit 1 should ALWAYS be assigned to the terminal device.
; The remaining logical units are assigned to the "system" device.
ASG = TI:1, SY:2|

229

-t - - - - - - •- .

AFPEI.DIX 0

OLPAES Programmer Aides

The following pages contain information on how to use the

OLPARS programmer aides. The current programmer's aides are CENI,

INSHSP, MAKOPT, CDTDMP, and CLTDMP. GEN is used to generate a new

CLPARS user directory (see APPENDIX C), expand an old

user-directory, or give a list of the number of trees a user is

allowed. INSHSP can be used to activate or deactivate debug

print-out of specific programs when program instrumentaticn is

present in the task and turned on. NAKOPT is used to create the

OLPARS option file (see Appendix B). ODTDMP and CLTDVP can be used

to dump the structural content of an CLPARS data or logic tree,

respectively.

The format of the aid descriptions is identical with the

OLPARS User's Manual format.

230

CLFA.S Programmer ,Aides -- G

GEN;

CDCI-AL C I;,,E: CEN

CATECCRY: Programmer's Aide (system dependent)

FLCTICOAL EESCRIPTION:

The CEN utility creates all the necessary CLPARS 'fixed'
files that are required by an CLPARS user. File headers
are appropriately initialized. GEN also sets up the File
Code Table, which specifies the total number of trees
(data/logic) that an CLPARS user is allowed to have in
his directory. The user has the additional options of
expanding his tree capacity (allow for more trees) and
of printing out his tree capacity (list out the number
of trees allowed, the number of trees currently existing,
and the remaining number of trees allowed).

USER INTERACTION:

There are three possible ways to run gen:

1) GEN<cr>

2) GEN 'switch' <cr>

3) RUN GEN<cr>

1 and 2 above assume that the GEN' task has
been installed. (INS GEN/TASK=...GEN)

GEN takes the following switches:

/NW:n create a new user with a tree capacity of n

/EX:n expand an old user's tree capacity by n

/LI print out a user's tree capacity

2-141

-Iis

CLEAFS. Programmer Aides -- G
GEN (ccntinued)

EXAM FLE(S):

Three examples of CELN sessions will be giver,
one for each method of running CEN.

1) Session when user types CEH<cr>

/GEN <r>/

GEN>/ /LI<cr>/

USER'S TREE CAPACITY = 10

THE NUMBER OF TREES EXISTINiG INi THE USER'S DIRECTCRY 0

THE RE.AINING NUMBER CF TREES THAT THE USER IS ALLCWEL
= 10

GEN>/<cr>/

2) Session when user types GEl 'switch' <cr>

/GEN /EX:20<cr>/ (the outer-most slashes mark user
response)

3) Session when user types RUN GEII<cr>

/RUN GEN<cr>/

TO EXPALD A USER'S TREE CAPACITY, TYPE /EX:N
WHERE N IS THE NUMBER OF TREES BY WHICH TO
EXPAND A USER'S TREE CAPACITY

TO CREATE A NEW USER, TYPE /NW:N
WHERE N IS THE NEW USER'S TREE CAPACITY

TO PRINT OUT A USER'S TREE CAPACITY, TYPE /LI

//NW:50<cr>/ (the outer-most slashes mark user response)

23
232

I,

CLPARS Programmer Aides -- G
GEN (continued)

~~~~(riGTES:*******************

If the user .apes tne switches to create or
expand an CLPARS directory (/EX:n or /t4&:n),
and CE14 completes successfully, no messages
are printed at the terminal.

Running GEN by typing GE!<cr> allows the user
to run as many GEN options as he wishes. After
each option has been executed, the prompt 'GEI4>'
is put out at the user's terminal. He can then
type in another option (switch), or type a
carriage return or a control-Z to exit. Running
GEN using either of the other two methods (RUN
GEN<cr>, or GEN 'switch' <cr>) only allows for
one option to be executed. After execution of
the option, GEN halts and the VCR prompt (>)
is put up at the user's terminal.

In the examples above, the expression / /LI/
means that the user typed " /Lil".
Typing a space before a switch or before a
carriage return is optional.

**************************************** *

233 .



CLPARS Programmer Aides -- G

!INSHSP

CCIXMANED NA .E: INSHSP

CATECCRY: Programmer's Aide

FUNCTICNAL DESCRIPTICN:

INSHSF (Instrumentation history file Patch) can be usea
by an CLPARS programmer to activate or deactivate
instrumentation for a selected set of CLPARS subprograms.
This can help keep the amount of printed information in
the instrumentation output to a minimum.

USER INTERACTION:

User is asked:

1. for the name of the file containing names of
programs to activate or deactivate in
instrumentation.

2. to 'activate' or 'deactivate' given programs

EXAMPLE(S):

A file (OLPPGMS.TXT) has been created containing the
names TLSRCH, GARBND, EQUALA, and OPENTR on separate
lines (upper case letters are important). The program
CEEFAULT has been executed to set the instrumentation
'ON' and set the instrumentation threshold to five
(this will silence the other succesfully executed
programs).

TYPE IN FILENAME CONTAINING NAMES OF
PROGRAMS TO ACTIVATE/DEACTIVATE - /OLPPGMS.TXT/
ACTIVATE OR DEACTIVATE (A/D)? /A/

(PROMPT NOTES:
If the next OLPARS command executed enters any of the
programs 'activated', then instrumentation will
appear for those programs. Note: instrumentation
may also appear for any programs that exceed the
current instrumentation threshold requirements other
than those specified thru 'activation'.

The program activation will last at least five times
the number of times the program name appears in the
activation file. So, if a program's name appears
once in the activation file, and it is successfully
executed five times, then instrumentation will cease
for that program.

234



OLPARS Programmer Aides -- G
|~ FA KG FT

' CCMNALC NAME: M AKO FT

J CATEGORY: Programmer's Aide (system dependent)

FUNCTIC14AL LESCRIFTION:

MAKCFT creates the CLPARS option file (OPTICN.CLP)
within the CLPARS directory. MAKOPT uses the option
text file (CPTION.TXT) as an input file. This program
shoula be used only by CLFARS programmers/mintainers
to create the proper option file. See Appendix L of
this manual for a description of CFTICN.CLP and
CPT1CU.TXT and for information on future Cption
File Niaintenance.

USER INTERACTION: NONE

(NCTES:

If for some reason MAKOFT cannot create the option
file, an appropriate error message will be printed
at the user's terminal, and the program will exit.
If the program completes successfully, the number
of program names processed is printed at the user's
terminal.

235



OLPARS Programmer Aides -- G

ODTLMF

COFMAI.D rANE: GDTEMP

CATEGORY: Frogra zr's Aide

FUNCTIONAL EESCRIPTICN:

The CDTLMP (OLPARS Data Tree Dump) utility is used to
check the structural integrity of an CLPARS data tree.

USER INTERACTION:

User types 'RUN <pathname>ODTrWhF' to initiate the
program. <pathname> is whatever is needed to locate
the program.

Once the program is running, the user is asked for the
name of the CLPARS data tree to be dumped.

NOTE: To use this program properly, you must be

'in' the OLPARS user's directory where the
data tree to be dumped is located.

EXAMPLE(S):

The tree 'nasal' is going to be dumped.

1) RUN DB:[313,40]CDTDMP

2) the program prompts the user with:

OLPARS DATA TREE NAME - /nasal/

236



OLPARS Frogrammer Aides -- G
CETLMF (continued)

3) results in:

STRUCTURAL LESCRIPTION OF OLPARS TREE nasal

8 NODES INl TREE
12 IS VECTOR DIMENSIONALITY
0 NODES IN FREE LIST
1 IS SENIOR NDE SLCT It, ENTRY TAELE

ENTHI TALLE

1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 C 0
I 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 C 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 C 0
7 0 0 0 0 0 0 0 0 0 C
8 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 C C

C O U N T S PO I N T E R S
NODE NAME VEC VCP LNC KID NL P S FC FLN LNL LNB

1 * 422 0 7 7 1 - - ss - -

2 soy 61 1 0 0 2 * c - - c -

3 corn 60 62 0 0 2 * o - - o s
4 oats 65 122 0 0 2 * w - - w c
5 weat 60 187 0 0 2* C - - C o
6 Cloy 62 247 0 0 2 * a - - a w
7 alfa 54 309 0 0 2 * r - - r C
8 rye 60 363 0 02 * . .. . a

STRUCTURAL PICTURE FCR nasal

soy
corn
oats
weat
Clov
alfa
rye

237

I. .. ... ,



CLPARS Frogrammer Aides -- G
ODTLE!F (continued)

(PRUI PT NOTES:

If you wish to exit from CDTDMP at the tree name
prompt, enter an empty line.

Following is an expansion of the abbreviated headings
in the counts and pointers table seen in the previous
example.

VEC - the number of vectors that 'lie' at the given
node.

VCP - the position of the vectors in the Tree
Vector file for the given lowest node.

LNC - lowest node count, the number of lowest nodes
beneath the given node.

KID - the number of children (kids) for the given

node.

NL - node level of the given node.

P - parent of the given node.

S - sibling of the given node.

FC - first child of the given node.

FLN - first lowest node of the given node

LNL - lowest node link, node following the given
node in the lowest node chain.

LNB - lowest node back link, node preceding the
given node in the lowest node chain.

238

Oil.



OLPARS Programmer Aides -- G

CLT EM 1

CC,KAND NAtE: OLTEMP

CATECORY: Programmer's Aide

FUNCTION AL LESCRIPTICN:

The CLTLMP (OLPARS Logic Tree Lump) utility is used to

check the structural integrity of an OLPARS logic tree.

USER INTERACTION:

User types 'RUN <pathname>OLTLMP' to initiate the
program. <pathname> is whatever is needed to locate
the program.

Once the program is running, the user is asked for the
name of the OLPARS logic tree to be dumped.

NOTE: To use this program properly, you must be
'in' the OLPARS user's directory where the
logic tree to be dumped is located.

EXAMPLE(S):

The tree 'EXAMPLE' is going to be dumped.

1) RUN LB:[313,40]OLTDMP

2) the program prompts the user with:

OLPARS LOGIC TREE NAME - /EXAMPLE/

239

J . ~~~... , - .. . . . . . .. '

- - .'



OLPARS Programmer Aides -- G

CLTLMF (continued)

3) results in:

STRUCTURAL DESCRIFTION CF CLPARS LOGIC TREE EXAMPLE

DESIGN DATA SET - EXAMPLE
DIMENSIONALITY - 4
CLASS CCU14T - 4

NODES
NEXT AVAILABLE(8) AT END OF FILE(9) IN USE(6)
(NODES IN FREE LIST 8 7 )

CURRENT LOGIC NODE - 4
REASSOCIATED NAMES - NO
LV ENTRY SIZE - 12
INCOMPLETE NODE CT.- 4

DDS CLASSES PRESENT IN TREE, WITh A-PRIORI PROBABILITY

ABC 0.254 DEFG 0.254 CAT 0.288 SAND 0.203

CREATING
NODE LOGIC COMAD NL KID PP FC SB LVP RJPIOCNM RCNM MLF NCF PR.

1 GROUP L1EIGV 0 3 0 2 0 1 0; -------- 0 4 ALCS
2 GROUP L1EIGV 1 2 1 5 3 3 0 -------- C 3 ADC
3 INCFLT L1EIGV 1 0 1 0 4 0 0: -------- 0 2 AL
4 INCPLT L1EIGV 1 2 1 7 0 0 0 ---- ---- 0 3 ADS
5 INCPLT 2 0 2 0 6 0 0 -------- 0 3 ADC
6 INCPLT 2 0 2 0 0 0 0 -------- 0 2 AD

STRUCTURAL PICTURE FOR EXAMPLE

1 (SENIOR NODE)
2

5
6

3
4

24
240



CLPARS Programmer Aides -- G
OLTLMP (continued)

(PRhCPT NOTES:

If you wish to exit from CLTEMP at the tree name
prompt, enter an empty line.

Following is an expansion of the abbreviated headings
in the counts and pointers table seen in the previous
example.

NL - node level (with senior node starting at zero)

KID - number of children below a given node

PF - parent of the given node.

FC - first child of the given node.

SB - sibling of the given node.

LVP - decision logic vector pointer to LV file

RJP - reject logic pointer to LV file

CCNM - original data class name (should have value when
only one class exists at the given logic node)

RCNM - reassociated class name (should have value when
only one class exists at the given logic node)

MLF -modified logic flag

NCP - number of classes present

PR - class symbols of classes present at given node

************************ ******************

241 'I



AFPENrIX i

CLPARS Parameter Limits

This appendix defines parameter limits (minimum and maximum

values) for parameters used in CLPARS. These parameters can be

utilized by including the appropriate declaration file in the

source program. The parameters are first grouped according to

alphabetical order. Their 'location' (the file in which the

parameter can be found) is determined by attaching a file <type>

name of '.DCL' to the name given in the list (E.G., SCREEN.DCL).

The second grouping lists the parameters according to the file in

which they reside.

Parameter Value Location Description

A 7 SCREEN index to the x-coordinate of
the lower left point of the
display rectangle

ACCESS 0 DISPLAY indicator that an item is to be
read from a display file header

ALIFLG 7 LIHDR alias flag

ALPHA 1 CHARTYPE used when characters in name
can only be alphabetic

ALPHUiM 2 CHARTYPE used when characters in name
can be alpha-numeric

ANGLE 0 DISPLAY dummy angle parameter for btmap
routines

242

h=,m . .... 2 7 . . . .-



OLPARS Parameter Limits -- 11
Alphabetized

Parameter Value Location Description

AthYC hR 3 ChARTYPE used when any printable ASCII
character (PASCII), DIGIT, or
LETTER is allowed in an
identifier

APPEID 2 STANDARL open-for-writing-at-the-end-of-
the-file indicator

8 SCREEN index to the y-coordinate of
the lower left point of the
display rectangle

BMPSIZ 2 BITMAP the size of the classes present
bitmap on PDP-11 machines (when
the maximum number of classes
is equal to 50)

BFET 12 TIFILE the back pointer to the entry
table slot number of a node

BUFSIZ 128 FACT physical record buffer size (in
real elements)

C 9 SCREEN index to the x-coordinate of
the upper right point of the
display rectangle

CAPSIZ 12 TIFILE the size of the counts and
poinuers region of a TI node

CLPBMS 5 RNKORD class pair by measurement type
of ranking

CLSBMS 4 RNKORD class by measurement type of
ranking

CLSLBN 4 LOGTYPE closed decision boundary logic
nodes

CLUSTR 1 DISPLAY the display code for a
two-space cluster plot

CM 1 FCDS communications file code (FCD)

CMDLEN 10 STANDARD maximum character length of a
command

CMHNE 97 LENGTH the length (in real elements)
of the communications file
header

243



OLPARS Parameter Limits -- H

Alphabetized

Parameter Value Location Description

CkLENE 0 LENGTH the length (in real elements)
of a logical entry of the
communications file

CCNMAT 4 DISPLAY the display code for a
confusion matrix display

D 10 SCREEN index to the y-coordinate of
the upper right point of the
display rectangle

DATA 1 STANDARD data tree indicator

DC 1 RNKORD the index in the I file array
for the display code

DDSDIM 1 LIHDR design data set dimensionality

DDSNLN 2 LIHDR number of lowest nodes in
design data set

DELETE 1 STANDARL creating-a-temporary-file
indicator

DI 4 FCES display information file code
(FCD)

DIGIT 2 CHARTYPE means character is a digit

DIHNE 1 LENGTH the length (in real elements)
of the display information file
header

DILENE 1 LENGTH the length (in real elements)
of a logical entry of the logic
list file

DINITM 17 DISPLAY the number of LI file header
elements referenced by
subroutines EIGHDI and LIPHDI

DS 19 SCREEN index to the distance between
succesive one space 'macro'
display base lines

DSPCHR RNKORD the index in the DI file array
for the ordered list of display
characters

244



CLPARS Parameter Limits -- I1

Alphabetized

Parameter Value Location Description
-------------------------------------------------------------------

DV 5 FCLS aisplay value file code (FCE)

DVHNE 1 LENIGTH the length (in real elements)
of the display value file
header

DVLENE 1 LENGTH the length (in real elements)
of a logical entry of the
display value file

DVNITM DISPLAY the number of [V file header
elements referenced by
subroutines LVGHDR and LVFHDR

E 15 SCREEN index to the minimum
x-coordinate of a one space
base line

ENMEAN 17 TIFILE the first element number of the
means in the TI file

EOF -1 STANDARD end-of-file code

ECS 0 STANDARD end-of-string indicator for
integers

ERROR -1 STANDARD the standard error value
throughout CLPARS

EXMLIM 150 LIMITS the maximum number of
measurements allowed in a
vector in excess measurement
mode

F 16 SCREEN index to the minimum
y-coordinate of a one space
base line

FCP 7 TIFILE the code for accesssing the
first child pointer of a node

FIXED 5 FTYPE the fixed file type indicator

FKIDND 4 LISTRC index to the first child
pointer of the current logic
node

245



CLPARS Parameter Limits -- H

Alphabetized

Parameter Value Location Description

FLNF 8 TIFILE the code for accessing the
first lowest noce pointer

FNAMSZ 13 FACT size (in words) of system file
name

FNMLE14 34 STANDARD the maximum length of an RSX-11
filename

FREE 0 CALUN value to indicate that a 'LUN'
is free

FRELST 13 TIFILE pointer to the next "inactive"
member in the free list (one
past the current member)

G 17 SCREEN index to the maximum
x-coordinate of a one space
base line

GRPLOG 2 LOGTYPE group logic nodes (1-space,
2-space, boolean)

HC 6 SCREEN index to the number of display
units in character height

HD 4 SCREEN index to the number of display
units in display height

HERLEN 3 OPTION the length of a header record
in OPTION.CLP

HEADER 0 STANDARD header indicator value to the
'FGET' and 'FPUT' routines

HELP -2 STANDARD the standard help value

response from 'TRMGET'

HGT 0 DISPLAY dummy height parameter for
btmap routines

HS 10 FCDS history file code (FCD)

HSHNE 1 LENGTH the length (in real elements)
of the history file header

246

4I I ii



OLPARS Parameter Limits -- H
Alphabetized

Parameter Value Locaticn Description

HSLENE 5 LENGTH the length (in real elements)
of a logical entry of the
history file

HSh- 2 SCREEN index to the number of display
units in screen height

HSTBSZ 503 HISTRY historic file table size
(important: prime no.)

IGNORE -1 DISPLAY indicator that an item is not
to be read/written from/to a
display file header

INCPLT 0 LCGTYPE incomplete logic nodes

Ihi 0 DISPLAY dummy indicator parameter for
btmap routines

INITHR 5 F STRY initial threshold value for
debugging information

LCE 13 SCREEN index to the number of
characters per line

LETTER 1 CHARTYPE means character is a letter
(either UPPER/lower case)

LEVEL1 0 INSTRU initial debugging printout
level

LIFILE 3 FTYPE the logic information file type
indicator

LIHENE 272 LIFILE the LI header number of
elements

LILENE 22 LIFILE the LI logical entry number of
elements

LL 3 FCLS logic list file code (FCD)

LLHNE 2 LENGTH the length (in real elements)
of the logic list file header

LLLENE 25 LENGTH the length (in real elements)
of a logical entry of the logic
list file

247

II



CLFARS Parameter Limits -- H
Alphabetized

Parameter Value Location Description
---------------------------------------------------------------

LNEP 10 TIFILE the code for accessing the
lowest node back pointer of a
node pointer of a node

LNCRNT 6 LIHDR current logic node

LNLP 9 TIFILE the code for accessing the
lowest node link

LOGIC 2 STANDARD logic tree indicator

LOWEST 6 LOGTYPE all lowest logic nodes in logic
tree (both complete and
incomplete) (lowest means, Ino
children')

LSTRSZ 7 LISTRC logic tree structure size

LUNPTR 1 CALUN 'LUN' pointer portion of
'Luntbl'

LVFILE FTYPE the logic value file type
indicator

LVHENE 3 LVFILE the LV header number of
elements

LVLMIN 12 LVFILE the minimum length of a logical
entry in the LV file

LVLCGK 6 LISTRC Logic value file pointer index
to decision logic for given
logic node

LVNELM 8 LIHDR number of elements in an LV
file entry

LVRJCT 7 LISTRC Logic value file pointer index
to reject strategy logic for
given logic node

MACRO 5 DISPLAY the display code for a
one-space macro plot

MAIN 0 INSGLEL signifies to INSPGM that the
calling program was a c 'main'
program

248



CLPAhS Farameter Limits -- H
Alphabetized

Parameter Value Location Lescription

MAXLbEY 2 LIMITS maximum number of cata
partitions (bounoaries) allowec
to be made on an CLPARS data
set

MAXEIN 50 LIMITS the maximum number of "bins"
allowed in a one-space display

MAXSPT 6 LIMITS maximum number of points
allowed in a two space boundary

MAXLUF 1 FACT the number of physical record
buffers is originally set to
one but will be extended at
task build time

MAXCLS 50 LIMITS the maximum number of data
classes allowed within CLPARS

)AXDIM 50 LIMITS the maximum vector
dimensionality in CLPARS (of
vectors not in excess
measurement mode)

MAXFIL 15 FACT maximum number of files that
can be open simultaneously

MAXHSP 20 HISTRY maximum size that the historic

stack pointer can

attain

MAXLIN 133 STANDARD the maximum length of an I/C
character string

MAXLUN 15 CALUN maximum number of available
logical unit numbers

MAXMTR 10 SMFILE the maximum number of matrices
allowed to be stored in the SM
file

MAXNAM 9 HISTRY maximum number of characters
allowed in an OLPARS

command (program) name

MAXOFT 15 OPTION the maximum number of options a
program can have

249

j- 2L4

j . ..

.1 _ ' . . .. ... .., i [i~ i ' " ". .. . . . . .. .



OLPAhS Parameter Limits -- H

Alphabetized

Parameter Value Location Description

MAXPGN 106 CPTICH the maximum number of "program
names" that can appear in the
CPTIOGN.TXT file

MAXSEG 10 DSCRNTHR the total number of segments
possible in two user specified
boundaries

MAXSEG 10 GP2BLK the total number of segments
possible in two user specified
boundaries

MAXVEC 32767 LIMITS largest number of vectors
allowed in an CLPARS data tree
(system dependent on integer
size, 2**(number of bits in an
integer - 1) -1)

MBCLPR 3 RNKCRD measurement by class pair type
of ranking

MBYCLS 2 RNKORD measurement by class type of
ranking

MENUMX 20 OPTION the maximum number of menus per
program name

MENVEC -1 DISPLAY the vector id in the DV file
indicating that the vector is
the mean vector

MESVEC 1 PVFILE the entry number of tK-
measurement vector in the
file

MICRO 6 DISPLAY the display code for a
one-space micro plot

MRW 11 SCREEN index to the, number of rows in
the cluster p.ot grid

NC 18 SCREEN index to the maximum number of
classes that can be displayed
on a one space 'macro' display
at any one time

250



OLPARS Parameter Limits -- H
Alphabetized

1arameter Value Location Description

NCL 12 SCREEN index to the number of columns
in the cluster plot grid

NDIME 3 RitKORD the index in the LI file array
for the dimensionality

N1DISP 6 LIMITS the maximum number of different

display types found in CLPARS

hEW 1 STANDARL new-file-to-be-opened indicator

1FIXFL 10 STANDARD the number of CLPARS fixed
files

NINCLN 9 LIHDR number of incomplete logic
nodes

NL TIFILE the code for accessing the node
level of a node

NLNkC.E 2 TIFILE the code for accessing the
number of lowest nodes beneath
a node

NMVLOG 3 LOGTYPE nearest mean vector logic nodes

NNUSEE 5 LIHDR number of nodes actively used
in logic tree

NODENL 2 LISTRC number-of-nodes-at-next-level
index (number of children below
the current node)

NODLEN 4 STANDARD maximum length of a node name

NODLVL 1 LISTRC index to the current logic
node's level in the logic tree

NOKIDS 3 TIFILE the code for accessing the
number of children at a node

NOSCRN 19 SCREEN the number of screen
coordinates in the CM file

251



CLPARS Parameter Limits -- H

Alphabetized

Parameter Value Location Description

NOTSET 0 DISFLAY the display code indicating
that the display is not set

NOVECS 1 TIFILE the code for accessing the
number of vectors at a node

NOZCCM 0 DISPLAY the flag indicating that
zooming is not in effect

NRSTNB 5 LOGTYPE nearest neighbor logic nodes

NUHCLS 4 RNKORD the index in the DI file array
for the number of classes

NXTAVN 3 LIHDR next available node entry in LI
file

NXTEND 4 LIHDR next open node entry at end of
file

OFF 0 DISPLAI the display flag value in a LI
file logical entry that means
the class should not be
displayed OR the screen
coordinate flag in the LV file
header that means the screen
coordinates have not been
computed

OFNLEN 10 OPTION the length of the option file

name (OPTICN.CLP)

OLD 0 STANDARD old-file-to-be-opened indicator

ON 1 DISPLAY the display flag value in a DI
file logical entry that means
the class should be displayed
OR the screen coordinate flag
in the DV file header that
means the screen coordinateshave already been computed

ONESPC 1 DISPLAY one-space indicator

OPTLE 9 OPTION the option file (OPTION.OLP)
logical entry size
:((MAXOPT+1)/2) +1

252

"- '-~l0 I I I



OLPARS Parameter Limits -- Ii

Alphabetized

Farameter Value Location Description

OFTIUM 2 RNKORL the index in the LI file array
for the option number of the
creating command

OTHER 4 CHARTYPE means character is not a
LETTER, DIGIT, or PASCII
character

OVRALL 1 RNKCRD overall type of ranking

indicator

PAIRWS 1 LOGTYPE pairwise logic nodes

PASCII 3 ChARTYPE means character is a visible
(printable) ASCII char. other
than a DIGIT or a LETTER

PGMLEN 10 OPTICN the maximum number of
characters allowed in a program
name

PP 5 TIFILE the code for accesssing the
parent pointer of a node

PRNTND 3 LISTRC index to the parent node of the
current logic node

PV 6 FCLS projection vector file code
(FCD)

PVHNE 18 LENGTH the length (in real elements)
of the projection vector file
header

PVLENE 1 LENGTH the length (in real elements)
of a logical entry of the
projection vector file

PVNITM 6 DISPLAY the number of PV file header
elements referenced by
subroutines PVGHDR and PVPHDR

QUIT -1 STANDARD the standard exit value
response from 'TRMGET'

READ 0 STANDARD read indicator to 'OPEN'
routines

253



OLPARS Parameter Limits -- H

Alphabetized

Parameter Value Location Description

RECTAN 0 DISPLAY the indicator that rectangular
scaling is to be used for a
two-space display

RNKOPT 5 RNKORE the index in the DI file array
for the rank order option

RNKORD 3 DISPLAY the display code for a rank
order display

RNKPRM 6 RNKORD the index in the DI file array
for the rank option parameters

Si 7 FCDS scratchl file code (FCL)

S1HNE 1 LENGTH the length (in real elements)
of the scratchl file header

SILENE 1 LENGTH the length (in real elements)
of a logical entry of the
scratchl file

S1NITM DISPLAY the number of SI file header
elements referenced by
subroutines S1GHDR and SIPHDR

SAVE 0 STANDARD creating-a-permanent-file
indicator

SBTMAF 21 BITMAP the element number in an LI
file entry at which the classes
present bitmap starts

SC2NUM 13 SCREEN number of elements of screen
coordinate infor- mation used
for two-space displays

SCATTR 2 DISPLAY the display code for a
two-space scatter plot

SIBLND 5 LISTRC index to the sibling node of
the current logic node

SM 9 FCDS saved matrix file code (FCD)

254



GCLFARS Parameter Limits -- Hi

Alphabetized

Parameter Value Location Description
-------------------------------------------------------

SMHNE 114 LENGTH the length (in real elements)
of the saved transformation
matrix file header

SELENE 51 LENGTH the length (in real elements)
of a logical entry of the saved
transformation matrix file

SP 6 TIFILE the code for accessing the
sibling pointer of a node

SQUARE 1 DISPLAY the indicator that square
scaling is to be used for a
two-space display

SRTFLG 7 RNKCRD the index in the DI file array
for the sort sort flag 4

SUBPGM 1 INSGLBL signifies to INSPGM that the
calling routine was c a
subprogram

SV 8 FCDS saved vector file code (FCD)

SVHNE 2 LENGTH the length (in real elements)

of the saved vector file

SVLENE 59 LENGTH the length (in real elements)
of a logical entry of the saved
vector file

TABSIZ 100 TIFILE the maximum size of a TI entry
table

TIFILE 1 FTYPE the tree information file type
indicator

TIHSIZ 105 TIFILE the size (in elements) of the

TI file header

TL 2 FCDS tree list file code (FCC)

TLHNE 2 LENGTH the length (in real elements)
of the tree list file header

TLLENE 12 LENGTH the length (in real elements)
of a logical entry of the tree
list file

255

I

bu- -11



GLPARS Parameter Limits -- H

Alphabetized

Parameter Value Location Description

TRELEN 8 STANDARD maximum length of a treename

TVFILE 2 FTYPE the tree vector file type
indicator

TVHENE 11 TVFILE the tree vector file's header

entry size

TWOSPC 2 DISPLAY two-space indicator

USAGE 2 CALUN usage portion of 'Luntbl'

USED 1 CALUN value to indicate that a 'LUN'
is used

VP 11 TIFILE the code for accessing the
vector pointer to the vectors
of a node in the TV file

VRNLEN 30 INSGLBL length of a Hollerith string
representing a variable name

WC 5 SCREEN index to the number of display
units in character width

WE 3 SCREEN index to the number of display
units in display width

WID 0 DISPLAY dummy parameter for btmap
routines

WRITE 1 STANDARD write indicator to 'OPEN'
routines

wS I SCREEN index to the number of display
units in screen width

ZCOM 1 DISPLAY the flag indicating that
zooming is in effect

2l 256

.- -- - -~ .- . .-



OLPARS Parameter Limits -- i

7 1 
According to File Location

Parameter Value Location Parameter Value Location

ENFSIZ 2 EITMAF NAXSEG 10 DSCRMTHR
SETNAP 21 BITMAP

BUFSIZ 12e FACT
FREE 0 CALUN FIAMSZ 13 FACT
LUNPTR 1 CALUN MAXBUF 1 FACT
MAXLUN 15 CALUN MAXFIL 15 FACT
USAGE 2 CALUN
USED 1 CALUN CM 1 FCLS

EI 4 FCLS
ALPHA 1 ChARTYPE DV 5 FCES
ALPHNM 2 ChARTYPE HS 10 FCLS
ANYCHR 3 CHARTYPE LL 3 FCDS
DIGIT 2 CHARTYPE PV 6 FCDS
LETTER 1 CHARTYPE S1 7 FCLS
OTHER 4 CHARTYPE SM 9 FCDS
PASCII 3 CHARTYPE SV 8 FCLS

TL 2 FCDS
ACCESS 0 DISPLAY
ANGLE 0 DISPLAY FIXED 5 FTYPE
CLUSTR 1 DISPLAY LIFILE 3 FTYPE
CCNMAT 4 DISPLAY LVFILE 4 FTYPE
DINITM 17 DISPLAY TIFILE 1 FTYPE
DVNITM 4 DISPLAY TVFILE 2 FTYPE
HGT 0 DISPLAY
IGNORE -1 DISPLAY MAXSEG 10 GP2BLK
INDI 0 DISPLAY
MACRO 5 DISPLAY HSTBSZ 503 HISTRY
MENVEC -1 DISPLAY INITHR 5 HISTRY
MICRO 6 DISPLAY MAXHSP 20 HISTRY
NOTSET 0 DISPLAY MAXNAM 9 HISTRY
NOZOCM 0 DISPLAY
OFF 0 DISPLAY MAIN 0 INSGLBL
ON 1 DISPLAY SUBPGM 1 INSGLBL
ONESPC 1 DISPLAY VRNLEN 30 INSGLBL
PVNITM 6 DISPLAY
RECTAN 0 DISPLAY LEVELI 0 INSTRU
RNKORD 3 DISPLAY
S1NITM 4 DISPLAY CMHNE 97 LENGTH
SCATTR 2 DISPLAY CMLENE 0 LENGTH
SQUARE 1 DISPLAY DIHNE 1 LENGTH
TWCSPC 2 DISPLAY DILENE 1 LENGTH
WID 0 DISPLAY DVHNE 1 LENGTH
ZOOM 1 DISPLAY

257



CLPARS Parameter Limits -- H
According to File Location

Parameter Value Location Parameter Value Location

BVLENE 1 LENGTH NGDENL 2 LISTRC
HSHNE 1 LENGTH NODLVL 1 LISTRC
HSLENE 5 LENGTH PRNTND 3 LISTRC
LLEINE 2 LENGTH SIBL14D 5 LISTRC
LLLENE 25 LENGTH
PVHNE 18 LENGTH CLSLBN 4I LCGTYPE
PVLENE 1 LENGTH GRPLOG 2 LcJGTYPE
SlHNE 1 LENGTH INCPLT 0 LOGTYPE
SlLENE 1 LENGTH LOWEST 6 LOOTYPE
SMHNE 114k LENGTH NMVLOG 3 LOGTYPE
SMLENE 51 LENGTH NRSTNB 5 LOGTYPE
SVMNE 2 LENGTH PAIRWS 1 LOGTYPE
SVLE14E 59 LENGTH
TLHNE 2 LENGTH LVHENE 3 LVFILE
TLLENE 12 LENGTH LVLMIIJ 12 LVFILE

LIHENE 272 LIFILE HDRLEN 3 OPTION
LILENE 22 LIFILE MAXOPT 15 OPTION

MAXPGM 106 OPTION
ALIFLG 7 LIHDR MENUMX 20 OPTION
DDSLIM 1 LIHDR OFNLEN 10 OPTION
LDSNLN 2 LIHDR OPTLE 9 OPTION
LNCRNT 6 LIHDR PGMLEN 10 OPTION
LVNELM 8 LIHDR
NINCLN 9 LIHDR MESVEC 1 PVFILE
NNUSED 5 LIHDR
NXTAVN 3 LIHDR CLPBMS 5 fiNKORD
NXTEND 41 LIHDR CLSEMS 4I RNKORD

DC 1 RNKORD
EXMLIM 150 LIMITS DSPCHR 8 RNKORB
MAXBDY 2 LIMITS MBCLPR 3 RNKORL
MAXBIN 50 LIMITS MBYCLS 2 RNKORD
MAXBPT 6 LIMITS NDIME14 3 RNKORC
MAXCLS 50 LIMITS NUMOLS 4I RNKORB
MAXDIM 50 LIMITS OPTNUM 2 RNKORD
MAXVEC 32767 LIMITS OVRALL 1 RNKORD
NDISP 6 LIMITS RNKOPT 5 RNKORD

RNKPRM 6 RNKORD
FKIDND 4I LISTRC SRTFLG 7 RNKORD
LSTRSZ 7 LISTRC
LVLOGK 6 LISTRC
LVRJCT 7 LISTRC

258



OLPARS Parameter Limits -- H
According to File Lccation

Parameter Value Location Parameter Value Location

A 7 SCREEN QUIT -1 STANDARE
B 8 SCREEN REAL 0 STA14DAR
C 9 SCREEN SAVE 0 STANDARE
D 10 SCREEN TRELEN 8 STALDARE
CS 19 SCREEN WRITE 1 STALDARE
E 15 SCREEN
F 16 SCREEN BFET 12 TIFILE
G 17 SCREEN CAPSIZ 12 TIFILE
HC 6 SCREEN ENMEAN 17 TIFILE
HE 4 SCREEN FCP 7 TIFILE
HSN 2 SCREEN FLNP 8 TIFILE
LCH 13 SCREEN FRELST 13 TIFILE
MRW 11 SCREEN LNBP 10 TIFILE
NC 18 SCREEN LNLP 9 TIFILE
NCL 12 SCREEN L 4 TIFILE
NOSCRN 19 SCREEN NLNODE 2 TIFILE
SC2NUM 13 SCREEN NOKIDS 3 TIFILE
WC 5 SCREEN NCVECS 1 TIFILE
WD 3 SCREEN PP 5 TIFILE

WS 1 SCREEN SP 6 TIFILE
TABSIZ 100 TIFILE

MAXHTR 10 SMFILE TIHSIZ 105 TIFILE
VP 11 TIFILE

APPEND 2 STANDARD
CMELEN 10 STANDARD TVHENE 11 TVFILE
DATA 1 STANDARD
DELETE 1 STANDARD
EOF -1 STANDARD
EOS 0 STANDARD
ERROR -1 STANDARD
FNMLEN 34 STANDARD
HEADER 0 STANDARD
HELP -2 STANDARD
LOGIC 2 STANDARD
MAXLIN 133 STANDARD
NEW 1 STANDARD
NFIXFL 10 STANDARD
NODLEN 4 STANDARD
OLD 0 STANDARD

259



APPENDIX J

File type naming conventions
of OLPARS files

This text is dedicated to the cause of 'keeping straight' all

the different file name types (or file extension names) found

within the RSX-11M version of portable CLPARS. As is known by

those people who are familiar with EEC's RSX, a file specification

looks like:

<filename>.<type>;<version number>

where <filename> is a 0-9 character string of letters and/or

digits,

<type> is a 0-3 character string of letters and/or

digits, and

<version number> is an octal number, used in uniquely

identifying files with the same

<filename> and <type>.

This text will only deal with the <type> portion of the RSX

filename.

First, you must be introduced to the abbreviations used here.

The following mneumonics refer to specific software tools used in

constructing CLPARS.

260



File type (extension) naming convensions -- J

AFT - PAR's FCRTRAN preprocessor

LSR - DEC Standard Runoff (VMS text formatter)

F4P - DEC's FCRTRAN IV Plus compiler

INC - PAR's 'include' utility program

LBR - DEC's object module librarian

MAC - DEC's macro assembler

MUN - another name for TEC

PIP - DEC's file transferring program

RNO - (runoff) a text formatter

TEC - TECo (text editor and corrector)

TKB - DEC's task builder (linker)

We can now proceed to the file type (extension) naming

conventions used in the portable OLPARS project. Note that the

period (.) portion of the file specification will preceed all the

following <type> names (this is to remind you that the 3 characters

represent file extension names).

.AFT - OLPARS programs to be 'AFT' processed

.ALG - textual alC- rithms to be processed by 'RNO'

.ASM - OLPARS assembly files that must be 'INClude' processed

.BLD - task build (linker) command files

.CML - RSX-11M '@' processor command files

.DCL - AFT or assembly declaration files (to be 'INCluded')

.DOC - text files already processed by the 'RNO' utility

.FIG - OLPARS figure documents (post 'RNO' processed, pre 'INC')

.FTN - FCRTRAN files to be processed by 'F4P'

261I6

I.



File type (extension) naming convensions -- J

.HLR - documentation headers for CLPARS programs

(to be 'INCluded')

.INC - 'INClude' processor input files

.MAN - manuals after 'RNO' processing

.MAC - assembly files to be processed by 'MAC'

.CBJ - rogram object modules used by task builder and librarian

.ODL - task build (linker) overlay description files

.OLP - OLPARS binary information files

.PAM - CLPARS programmer aide documents before 'RNO' processing

.PIC - pictures (figures) to be processed by 'RNO'

.PRM - OLPARS programmer's reference manual before ,RNC'

processing

.PTH - path name files used by the 'INClude' processor

.RNO - text files to be processed by the 'RNC' utility

.SPC - OLPARS program specification documents (to be 'RNC'

processed)

.SRM - OLPARS software reference manual before 'RNO, processing

.SRC - OLPARS 'AFT' source files that must be 'INClude' processed

.TEC - TECo command files

.TPL - template files used in generating documentation or command

files

.TSK - task images of executable programs

.TXT - Miscellaneous text files

.USM - OLPARS user manual documents before 'RNO' processing

262



File type (extension) naming convensions -- J

File Types and their Frocess Relationships

About Files and Frocesses

The chart on the following page shows the relationships

between the previously mentioned CLPARS file types anc processes.

In the chart, processes are represented with boxes, file types are

denoted with an initial period (.). The Q symbol surrounding

processes and file types indicates which operations are performed

by the RSX-11M command file processor. Lines intersecting process

boxes snow that the file at the other end of the line is used as

input to the process ("Arrowed" lines are used, aiso).

263



CVL

AT. (G)

-- - - - --- -- -

S --. hDR <-- NUN <- .EOC <-- RO -. SFC
-- - -- . ALG

e -- •LCL CCMMENT.TEC

@ -- •FIG <-- MUN <- LOC <-- RNO <- .PIC @

•SRC

- - - - - - - -- - -- - -

S ->: INC -- > •AFT -> AFT -- > •FTN -> F4P

.PTH

@: -- -- -- - -

INC -- > .MAC -AC -- > .OBJ <--- e
@ / \

.ASM (main programs) / \ (subrtns.) @

@ I- \---------

TSK <-- TKB LBR
@ Relationships between - -
e files and processes

.BLD .CLB < @

.ODL @e e

@ INC 1--> .PRM ->! PIP 1--> .RNO ->I DSR I--> •MAN G

@- .USM Q
@ - .PAM @
@- .SRM @

Miscellaneous <-- .TSK -- CLP
text files .TXT (some, not all)

2641



AFFENDIX K

Miscellaneous Text Files Created by
OLPARS Commands

The following list contains the names of the various text

files created by CLPARS commands along with the name of the

creating commmand (in parenthesis). Note, these files have no

<type> name.

CLASIFYi - list of logic nodes and number of vectors
assigned to each node.
(LOGEVAL)

CLASIFY2 - list of vector identifiers and logic nodes
to which they were assigned.
(LOGEVAL)

CCNMAT - confusion matrix listing.
(LOGEVAL, NMEVAL, PWEVAL)

EIGEN - eigenvalue listing.
(L1EIGV, L2EIGV, REPROJECT, S1EIGV,
S2EIGV)

LOGDUMP - logic tree dump.
(PRTLOG)

MISCLASS - vector misclassification listing.
(CREATLCG, LOGEVAL, 14MEVAL, PWEVAL)

SAVMTR - a saved matrix listing.
(MATRIX)

TREELUMP - data tree dump.
(PRTCS)

VECIDS - new-old vector identifier relationship
listing.
(MAKETREE)

265

'II



CLPARS Programmer and System Maintenance Manual

T IN£E X

INDEX

"fixed" files..............................219
"variable" files..........................................22C
(graphics pkg.) EhASE......................159
(graphics pkg.) LI14SEG....................159
(graphics pkg.) NARK.......................159
(graphics pkg.) MCVE.......................159
(graphics pkg.) RCTNGL....................159
(graphics pkg.) TEXT.........................158

ABSTRACT FILES AIhD INPUT/OUTPUT ............... 4
ADDITIONAL CCONSIDERATIONS...................35
ASPECTS CF PRTABILITY......................5

BATCH PROCESSING IN OLPARS ................... 168
BOOLEAN STATEMENT INTERPRETER.................167

CCMAND INPUT PROCESSOR (CIP).................3, 7, 177
COMMAND STRUCTURE .................. )
CONFUSION MATRICES........................133
C REAFX.................................19
CREATING NEW TREES FROM OLD TREES .............. 42
CURRENT MIN-MAX COORDINATES . .. .. .. .. .. .... 115

DATA TREE INPUT/OUTPUT....................163
DESIGN OVERVIEW..........................2
DISPLAY FILES USED IN MEASUREMENT EVALUATION ......... 126

ESCAPE CHARACTERS..................... 1141
EXPANDABILITY ........ ... . . . . .172

EXPANDING OLPARS UNDER RSX-11................197

F GET . . . . . . . . . . . . . . . . . . 22
FILE ACCESS AND CONTROL TABLE (FACT).............17-18, 22, 219
FILE CODE TABLE (FCT).................. 16, 18
FILE CODES FOR "FIXED" FL*ES (FCDs)...... ..... 17
FILE CODES FOR "VARIABLE" FILES (FOrs) ........ 17
FILE DESCRIPTORS .. .. .. .. .. .. ... .. .. 17-18, 22
FILE SYSTEM ROUTINES AND USAGE . . .. .. .. .. .... 13
FILENAMES VERSUS TREE NAMES . . .. .. .. .. . .. 176
FILGET .. .. .. .. .... . .. .. .. .. .. .... 160
F ILPUT .. .. .. .. .. .. .. .. ... .. ..... 161
FORTRAN CODE GENERATION...................165p
F PUT . . .. .. .. .. .... . . . . .. .. .. .... 22

GEN (generate OLPARS user's fixed files) .. ..... 231
GRAPHICS INPUT UTILITY PROGRAM (GIN) . .. .. . ..... 157
GRAPHICS OUTPUT UTILITIES . . . . .. .. .. .. .... 158

HELP FUNCTION ON RSX-11M.....................199



CLPAhS Programmer and System Maintenance Manuall hrE X

INSHSP (INstrumentation HiStory file Patch routine) 234
Instrumentation Package. .... ............. . 203
Instrumentation Package Programs ... ........... . 212

Level I File Access Routines ............... 22
Level I Manipulation Routines ..... ......... 18
Level II program naming conventions .... ......... 24
Level II Routines ...... .................. 24
LOGIN - LOGOUT ....................... 174

MAKOPT (make the CLPARS option file) .. ......... . 235
Miscellaneous Text Files in OLPARS ... .......... . 265

NOTES ON TERMINAL I/C ...................... . 156, 163
NOTES CN TEXT FILE I/O ..... ................ . 163

OCLOSE ......... ........................ 13, 20
OCREAT ......... ........................ 13, 18, 219
ODELET ............. 20
ODTDMP (OLPiRS ataTree Lump ......... . . 236
OLPARS FILE "FREE" LISTS ......... ....... . 44
OLPARS I/O notes (for RSX-11M) .... ............ . 219
OLPARS TRANSPORTATION CCNSIDERATIONS .... ......... 5
OLTEMP (OLPARS Data Tree Lump) . . ......... 239
OMOVE ........... .. .. ......... 13, 20
ONE-SPACE DISPLAYS (MICRO AND MACRO) ......... 116
OOPEN .......................... 13, 18, 20, 219
OPENFX ......... ........................ 219
ORENAM . . . . . 1............. 13, 20
ORIGINAL MIN-MAX COORDINATES . ............

PARAMETER LIMITS . . ................ . 242
PORTABILITY . ..................... 1, 3, 5
PRINTER LISTINGS ....... ................... . 161
PROGRAMMER AIDES ....... ................... . 230

RSX-11M Block I/O for OLPARS ...... .......... . 220, 224
RSX-11M File I/O Communication Paths .......... 222
RSX-11M file naming conventions .. ........ . . . . 260
RSX-11M file types and their process relationships . . 263
RSX-11M I/O notes . . . . . . .............. 219
RSX-11M logical unit allocation ... .......... . 222
RSX-11M Record I/O for OLPARS ............ 221, 226
RSX-11M Syste; Dependent files.. . . . ... ..... . 182
RSX-11M task building example (non-overlay) . .... 229
RSX-11M task building notes for OLPARS ........ 227
RSX-11M user files . . . . . . . ........... 219

SCALING IN TWO-SPACE DISPLAYS . . . . . ....... . 115
Screen Parameters for One Space Displays . . . . . . . 122 K

TERMINAL CHARACTER INPUT/OUTPUT ... .......... . 139
TERMINAL GRAPHICS INPUT/OUTPUT ... ........ . . . . . 157

.. .. iI ' u " ...



OLPARS Programmer and System Maintenance Manual
INLEX

TERMINAL SCREEN COORDINATES . .. .. .. .. .. .... 109
TEXT FILE I11PUT/OUTPUT..................160
THE COMMUNICATIONS (CM) FILE .............. 27
THE DISPLAY INFORMATION (DI) FILE............96
THE DISPLAY VALUE (DV) FILE..............102
THE LOGIC INFORMATION (LI) FILE.............52

T:LOGIC LIST (LL) FILE ....................
THE LOGIC VALUE (LV) FILE.................................0
THE PROJECTION VECTOR (PV) FILE..............15
THE SAVEL TRANSFORMATION MATRIX (SM) FILE ........ 90
THE SAVED VECTORS (SV) FILE ............. b
THE TREE INFORMATION (TI) FILE(S)................29
THE TREE LIST (TL) FILE...................50
THE TREE VECTOR (TV) FILE..................47
TREE INFORMATION (TI) FILE EXAMPLE. ........... 40
T RMOET.............................149
T RMPUT .. .......................... 143
TWO-SPACE DISPLAYS (SCATTER AND CLUSTER). .........5

user data and logic files...................220
USER FILE DEFINITIONS....................10
User files on RSX-11M . . . . . .. .. .. .. ..... 219


